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An ideal model of a ferromagnet is studied, consisting of a lattice of identical spins with cubic symmetry
and with isotropic exchange coupling between nearest neighbors. The aim is to obtain a complete description
of the thermodynamic properties of the system at low temperatures, far below the Curie point. In this
temperature region the natural description of the states of the system is in terms of Bloch spin waves.
The nonorthogonality of spin-wave states raises basic difBculties which are examined and overcome.

The following new results are obtained: a practical method for calculating thermodynamic quantities
in terms of a nonorthogonal set of basic states; a proof that in 3 dimensions there do not exist states (shown
by Bethe to exist in a one-dimensional chain of spina) in which two spina are bound together into a stable
complex and travel together through the lattice; a calculation of the scattering cross section of two spin
waves, giving a mean free path for spin-spin collisions. proportional to T ~I' at low temperatures; and an
exact formula for the free energy of the system, showing explicitly the effects of spin-wave interactions.

Quantitative results based on this theory will be published in a second paper.

1. INTRODUCTION

LOCH' invented the concept of a spin wave, which
consists of a single reversed spin distributed

~

~

coherently over a large number of otherwise aligned
atomic spins in a crystal lattice. He showed 6rst that
the low-energy excited states of a ferromagnet would be
of this character, and second that the resulting thermo-
dynamic properties of a ferromagnet at low temperature
were in agreement with experiment.

The theory of Bloch explicitly assumes that the
density of reversed spins is so small that the eGects of
obstruction and interaction between two or more spin
waves may be neglected. This is an approximation
which will certainly be good at sufBciently low temper-
atures, less good at higher temperatures. When spin-
wave interactions are neglected, the whole theory be-
comes linear in the spin-wave amplitudes. Herring and
KitteP took advantage of the linearity to construct a
very simple phenomenological spin-wave theory which
is independent of the underlying atomic structure of the
ferromagnet. But the question, how good such a linear
approximation should be, remained open.

Bethe' made a thorough study of the eGects of spin-
wave interactions in a one-dimensional chain of spins
(in which case there is no ferromagnetism). He showed
that in addition to the elementary Bloch spin waves
there exist excitations in which a block of two or more
reversed spins travel together through the chain. But
it did not seem easy to apply Bethe's methods to the
3-dimensional case. The extension of Bethe's results to
3 dimensions is made for the Qrst time in Sec. 6 of the
present paper. 4
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Berlin, 1933), Vol. 24, Part 2, 604-618.' We extend to 3 dimensions only the part of Bethe's work
referring to spin complexes with 2 reversed spins. In particular,
we do not claim to have extended Bethe's main result, which is
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A new attack on the problem of spin-wave interac-
tions was opened by Holstein and PrimakoG. ' They
considered the behavior of a 3-dimensional ferromag-
netic array of spins in an external magnetic 6eld. They
succeeded in de6ning a set of coordinates which describe
accurately the quantum state of the system and which
have the appearance of "spin-wave amplitudes. " In
terms of these coordinates the Hami1tonian of the
system splits into two parts, one quadratic in the
amplitudes and one of higher order. The quadratic
part alone would give a theory of noninteracting spin-
waves, identical with the linear approximation of Sloch.
The nonquadratic part represents the eGects of inter-
action between spin waves. It therefore appeared that
a consistent treatment of spin-wave interactions would
be possible, taking the quadratic part of the Hamil-
tonian as a 6rst approximation and dealing with the
nonquadratic part by perturbation theory. However,
it turns out that this is only possible when the external
field is strong. The nonquadratic part of the Hamil-
tonian is large, and for low-frequency spin waves in a
weak external 6eld the nonquadratic part dominates
the quadratic part. The Holstein-PrimakoG formalism
is thus essentially nonlinear and unamenable to exact
calculations. In fact, we shall see in Sec. 3 that the
interaction between low-frequency spin waves is quite
weak and is grossly overestimated by the Holstein-
PrimakoG Hamiltonian. The reason for this failure is
that the Holstein-PrimakoG coordinates are an arti6cial
creation and do not answer the physical requirements
of spin-wave amplitudes.

The program of the present paper is to develop a
mathematical apparatus for calculating the eGect of
spin-wave interactions systematically and to high pre-
cision. The calculation of these eGects will be carried
through in detail in a subsequent paper. %'e shall

con6ne our attention to a highly idealized model of a

the exact determination of the ground-state wave function of a
one-dimensional antiferromagnet.' T. Holstein and H. Primakoff, Phys. Rev. 58, 1098 (1940).
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ferromagnet, namely a 3-dimensional array of fixed
spins with cubic symmetry and purely isotropic ex-
change coupling of nearest neighbors. The aim is to
understand accurately the behavior of this simple
model, so that the deviations of real ferromagnets from
such behavior can be attributed to physical effects
which are here neglected.

Practical interest in the question of spin-wave inter-
actions arose from a remark of Keel. ' He pointed out
that the customary interpretation of the low-tempera-
ture spontaneous magnetization of ferromagnets rested
on the linearized Bloch theory, and that the two
published methods of calculation~ of the correction to
the magnetization produced by spin-wave interactions
were in disagreement. The method of the present paper
settled the disagreement by showing that both calcu-
lations were wrong. It turns out that the eGect of
spin-wave interactions is smaller than either of the
previous calculations envisaged, and therefore the

customary use of the linear theory is justified.
The analysis of the spin-wave phenomenon presented

in this paper goes very far beyond what would con-
ceivably be required in practical applications. The
purpose of the detailed analysis is to reach an under-
standing of the mathematical complexity inherent in
even such a simple model as we are considering. In the
process of understanding the model, we have developed
some new mathematical tricks and tools which may
have wider application. In this respect our work is
comparable to what has been done with the Ising
model, ' though we may justifiably claim that our model
has considerably greater similarity than the Ising
model has to a real ferromagnet.

The analysis is directed toward a calculation of the
free energy A of the system, as a series expansion in
ascending powers of the absolute temperature T. The
expansion parameter is the dimensionless ratio (kT/J),
where k is Boltzmann's constant and J is the exchange
energy between two neighboring spins. Once the free
energy is calculated, most of the other physical quanti-
ties of interest can be easily deduced. Through the
analysis there runs a certain analogy to the situation
in quantum electrodynamics, where the classical prob-
lem was the calculation of the scattering matrix S as a
power series in (e~/hc). In both cases, the power series
developments of S or A can be carried to any desired
order, and yet the quantities Sand 3 are not in principle
determined.

' L. Neel, J. phys. radium l5, 74S (1954).
'H. A. Kramers, Commun. Kamerlingh Onnes Lab. Univ.

Leiden Suppl. No. 83 (1936); W. Opechowski, Physica 4, 715
(1937); M. R. Schafroth, Proc. Phys. Soc. (London) A67, 33
(1954).A third published calculation, which is also in disagreement
with the two earlier methods of calculation and with the results
reported here, came to my attention later: J. Van Kranendonk,
Physica 21, 81, 749 and 925 (1955).

G. F. Newell and E. W. Montroll, Revs. Modern Phys. 25,
353 (1953). This article gives a full bibliography of earlier work
on the subject.' F. J. Dyson, Phys. Rev. 75, 486 and 1736 (1949).

In the analysis of the ferromagnet, we make an
expansion in powers of (kT/J), and explicitly neglect
effects proportional to exp[ J/—kTj which tend to zero
at low temperatures faster than any power of T. But
it is clear that effects of order exp[—J/kTj play a
decisive role at temperatures around the order-disorder
transition point where kT and J are comparable.
Therefore the low-temperature power-series develop-
ment cannot determine the behavior of the ferromagnet
in the transition region, even if all terms in the expan-
sion are supposed accurately known. The series is an
asymptotic expansion for the free energy, but does not
determine the free energy. If the series happens to be
convergent, its sum need still not be exactly equal to
the free energy [as a trivial example of this, consider
the Ising model where the entire free energy goes to
zero like exp( —J/kT) at low temperatures and so all
coefficients in the power series are zero, but the free
energy is not zeroj.

It is interesting to speculate that the ideal ferro-
magnet is a model of the kind of behavior to be expected
in any nonlinear field theory such as quantum electro-
dynamics or meson theory. |A'e have seen that an
expansion in powers of [kT/J) gives no hint of the
behavior of the ferromagnet at the Curie point. It is
likely that weak-coupling treatments of field theory, in
which (e~/Ac) is treated as small, give no hint of what
really happens in the domain of strong coupling. The
very concept of a spin wave seems to be limited to the
domain of low temperatures where the power-series
expansion is meaningful, and it may be that the con-
cepts of contemporary field theory are likewise mean-
ingful only within the domain of weak-coupling
approximations.

S,+=S,'aiS,'. (2)

Each spin has magnitude S; this implies the operator
identity

Sr S~+= (S—S~') (S+S~*+&).

2. DEFINITION OF SPIN WAVES

The model to be discussed is a finite cubic crystal
with periodic boundary conditions. Each atom is
labeled by a lattice vector j, and there is a fixed integer
e such that the atom (j+Nk) is identical with the atom

j for any two lattice vectors j, k. The total number of
atoms is A"=e', and the volume of the crystal is ÃV,
where V is the volume of a unit cell.

To each atom j is attached a spin vector S; obeying
the usual commutation rules, which it is convenient to
write in the form

[S,*,SI,"j=b,gS;+,

[S,',Sp g= —8;pS;,
[S,+,Sp )=2b,gS,',

with
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The dynamical properties of the model are expressed
in the Hamiltonian

Se= 6+OR,

h= —-',Jg, p S,"S;+p,

oR= I.Q; S,'. (6)

The summation in (5) extends over all lattice vectors
j and over the vectors 6 which join an atom to one of
its nearest neighbors. Thus 8 is an isotropic exchange
coupling of magnitude J between nearest neighbors,
and we shall suppose J positive so that the system is
ferromagnetic at low temperatures. The magnetic
energy BR represents the eGect of a uniform external
magnetic Geld, directed along the negative s-axis, of
magnitude

H =SL/m,

where ns is the magnetic moment of each spin. Magnetic
dipole coupling between the spins is not included in
this model.

The reciprocal lattice of the crystal is here defined as
the set of vectors 2 such that for all lattice-vectors j
the quantities

(I/2x) (X j)
are integers. Reciprocal lattice vectors are denoted by
Greek letters 2, p, y, e, and (X+ey) is identified with

There are E reciprocal lattice vectors, and the
reciprocal lattice cell volume is

v = (2')'(XV)—'.

The spin operators attached to the reciprocal lattice
are defined by

Sg=E—i Q; exp(Q, j)S;,
and their commutation rules follow from (1):

[Sy',S„+]=X 'S),+„+,

[Sg',S„j= —E=*'Sg+„—,

I
s~+s. j=2& 's~+.*.

The ground state of the whole system is the state
0) defined by

s;-lo)=o, s,*lo)= —slo) (12)

3. KINEMATICAL AND DYNAMICAL
SPIN-WAVE INTERACTIONS

The nonorthogonality of the states (15) produces an
interaction between spin waves which we call the
kinematical interaction. The physical cause of this
interaction is the fact that more than (2$) units of
reversed spin cannot be attached to the same atom
simultaneously. There is therefore a certain statistical
hindrance to any dense packing of many spin waves
within a limited volume.

There is another spin-wave interaction which arises
from the fact that the Hamiltonian (4) is not diagonal
in the states (15). This we call the dynamical inter-
action. To obtain this interaction explicitly, we shall
calculate the eGect of the Hamiltonian operating on
(15).Using (10), the Hamiltonians (5) and (6) may be
written

&= —-'JZ~v6~ S ), (16)

non-negative integers a~, one attached to each reciprocal
lattice vector X. Then the spin-wave state Ia), con-
taining u& spin waves with wave vector 2, is defined by

l~)=II~[(2$) ""( ) '(s ') ~jlo). (15)

The order of factors in the product is immaterial since
they all commute.

As soon as P uq)1, the states (15) are neither
normalized nor orthogonal to each other. From this
fact arise all the conceptual difficulties in thinking about
spin waves. The states (15) are much more numerous
than the total number (2$+1)~ of independent states
which the system possesses. So the variables (a) are a
highly redundant set of variables for describing the
system. Nevertheless we shall find it convenient to use
these variables, and to take their redundance into
account explicitly. It happens that at low temperatures
the only important states

I a) are those with Q az small
compared with E, and these states are approximately
orthogonal to each other. They come closer to orthogo-
nality the lower the temperature. Thus the idea of a
spin wave, as it is here defined by Eq. (15), is an idea
which has a perfectly sharp meaning only at zero
temperature and loses its meaning entirely as the
temperature rises to the Curie point.

for all j, or equivalently

Sg—
I 0)= 0, Sy*

I 0)= —X&$8),p I 0) (13)

7g ——Qp exp(iS 2)

5K= I.Ã*Sp'

for all X,. Following Bloch' we define a spin-wave state
I 1&,), containing a single spin wave with wave vector 2,
by

I1g)= (2S)—&S+I0). (14)

These states are properly normalized and are orthogonal
to each other and to

I 0). The problem now arises, how
to define spin-wave states with more than one spin-
wave. We shall follow Bloch and use the natural
generalization of (14). Let (a) represent any set of

To calculate 3'.
I a), we commute the operator BC through

the operators Sz+ appearing in Eq. (15) until BC operates
directly on the ground state IO). This gives a sum of
terms involving the commutators

Q„=$K,S,+)=I.s„+
—p~& *'Z~(v~ —v~-p) (R*sp-~+—s~+sp —x'), (20)

plus a term Epl u) with Ep given by

KI0)=Epl0), Ep pJES'yp IES. ——(—21)—
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Next we commute the Q, again through the operators
Sq+ until Q, operates directly on I0). This gives a sum
of terms involving the commutators

R„=[Qp,s,+j=——,
' JN-'Q), I'p, "S,+),+S~),+, (22)

& pr =Vi Vi—p Vi+e+|'«+a—py

plus a sum of terms (L,+e,) I a) with e, given by

Q, lo)= (r+.,)s,'lo), "=Js(~o ~.) —(24)

The process of commutation comes to an end after two
steps because

[Rp.,si+1=0. (25)

The result of this process is a formula

3'-I a)= [~o+Zi ai(L+&«) jl a)+Z«Q «I &» (26)

where the second sum extends over spin-wave states
Ib) which are obtained from I a) by replacing one pair
of spin waves (y,o) by a pair (y —2, e+2). The Q«, are
numerical coefficients containing the F„"dined by
Eq. (23). In Eq. (26) the Hamiltonian is explicitly
separated into a diagonal part representing the energy
of free spin waves, and a nondiagonal part representing
a simple scattering of one spin wave by another. The
nondiagonal part of Eq. (26) is the dynamical spin-wave
interaction.

The main reason for using the spin-wave states
delned by Eq. (15) is that the resulting dynamical
spin-wave interaction is very weak. According to Kqs.
(17) and (23),

I',.'=Q«exp(iS X)[1—exp( —iS p)]
X[1—exp(iS o)]. (27)

These coefficients become small when the spin waves y
and o have wavelengths long compared with 5, irre-
spective of the value of X. Therefore for a low-temper-
ature spin-wave state la) containing only long-wave-
length spin waves, all interaction matrix elements Q«

are uniformly small, and the Hamiltonian K is almost
diagonal. The effects of the interaction are reduced still
further when (27) is averaged over the directions of y
and o.

The Holstein-Primako8 spin-wave theory' uses a
basic set of states differing from (15). The basic states
are dedned so as to be rigorously orthogonal to each
other, so that the kinematical spin-wave interaction
does not appear. The total interaction is then a dy-
namical interaction given by an equation similar to Eq.
(26), but with coeKcients Q«, which do not tend to
zero at long wavelengths. Although the absence of
kinematical interaction makes the situation superficially
simpler, the resulting strong dynamical interaction
leads to an essentially nonlinear and mathematically
intractable formalism.

In our treatment of the theory, a tremendous simpli6-
cation appears when we consider ideal scattering
processes. An ideal scattering process is defined as a
process in which a ftnite number of spin waves interact

Z= Spur[exp( —pK) j, p= (hT) '. (2g)

As is well known, the spur may be evaluated by ex-

"This picture seems to be responsible for the large interaction
effects calculated by Van Kranendonk in reference 7.

in an indnite and otherwise empty lattice, the spin
waves in initial and final states being spatially separated
from each other. This is precisely the type of scattering
process to which the 5-matrix analysis of quantum
electrodynamics' can be applied. In such a process,
the initial and Anal states are automatically orthogonal
and unaGected by the kinematical interaction. The
development of the system at intermediate times is
governed by the Hamiltonian (26), and the nonorthogo-
nality of the states la) and Ib) does not change the
formal solution of the Schrodinger equation with this
Hamiltonian. Therefore we reach the conclusion that
the hir«ematical ir«teractiom produces No effect at all ol the

matrix elements for ideal scatterir«g processes. We may
calculate such processes with the dynamical interaction
alone.

In Sec. 6 we shall calculate in detail the matrix
elements for scattering of one spin wave by another.
We find, as expected from the smallness of Eq. (27),
that the scattering becomes very small at long wave-
lengths. This shows apodictically that the large inter-
action of the Holstein-Primakoff treatment is illusory.
If in fact the equations of Holstein-Primakoff could be
solved exactly, they must lead to the same small
scattering matrix elements that we calculate. The large
eGect of the diagonal matrix elements of the Holstein-
PrimakoG interaction must be almost exactly compen-
sated by effects of the nondiagona1 matrix elements
which are customarily neglected.

We may state quite generally that the interaction
between two isolated spin waves is only the dynamical
interaction. The kinematical interaction is a purely
statistical eGect which reduces- the statistical weight of
states containing a high density of spin waves per unit
volume. The kinematical interaction therefore appears
in calculations of the statistical and thermodynamical
properties of the spin-wave system, but not in the
dynamics of individual spin waves.

There exists a naive picture of the kinematical inter-
action" in the case S=—'„according to which one spin
wave creates an "obstacle" to the passage of a second
spin wave through the same region of space, because
two reversed spins cannot occupy the same atom
simultaneously. This picture would lead one to expect
a scattering cross section like that of a "hard sphere"
of atomic dimensions. In fact, the picture is totally
incorrect. Two spin waves of long wavelength can
"Boat over" each other almost without mutual inter-
ference, even in the case 5=-,'.

4. PARTITION FUNCTION EXPRESSED IN TERMS
OF NONORTHOGONAL STATES

The partition function of the model is
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pressing it as a sum over any complete orthogonal set
of states. Our problem is that we have a convenient
and approximately diagonal representation of 3C given
by Eq. (26), only in terms of the nonorthogonal spin-
wave states la). We shall now develop a method for
calculating Z by means of sums over nonorthogonal
states.

The starting point is the observation that the states
ja) are redundant, and certainly not deficient, for
spanning the Hilbert space of the system. Also these
states appear to be distributed in a rather symmetrical
way over the Hilbert space. Hence we may expect that
the density matrix

X=P. l a)(al (29)

(v f u) =F„S„„, F„=II;F(u,),

( 1q ( u —1yF(u)=111——
I

"I 1—
2S) ( 2S )

(31)

(32)

From Eqs. (10), (15), and (30) it follows that the
states j a) and ju) are orthogonal unless

Z~ u~=Zx ax= /. (33)

When Eq. (33) is satisfied, we write ji, , j, for the
indices j appearing in (u), taken in any order and with
the appropriate multiplicities N;. Similarly we write

, 2, for the indices X appearing in (a). Then
Eqs. (10), (15), and (30) give

( I )=Lii;(, )-']Lit.(".)-~]~-~
XF„+i expLi P„X, Fj„], (34)

where Ej„denotes any permutation of the indices ji,~, j„and the sum is over all of the (q!) such permu-
tations.

Now consider the expression

(ufIt f ~&=Z.(ula&(af ~&. (35)

The summation over (a) is equivalent to a summation
over each index X~, , X, over the whole reciprocal
lattice independently, with a factor ~i, (aq)!/q!] to
correct for the fact that all permutations of 0 &,

give the same (a). When Eq. (34) is substituted into
(35), the summations over Xi, , 2, can be performed

is a fairly good approximation to the unit operator, and
will differ from the unit operator only by giving diferent
statistical weight to diferent parts of the Hilbert space.
We shall confirm this guess by calculating E exactly.

A complete and orthogonal, but not normalized, set
of states for the system is defined by

l )=II,L(2s)--:- (,.)—:(s;+)-]lo), (3o)

where (u) represents a set of integers u;, one attached
to each lattice point j, each taking only the values 0,

. , 2S. These, are the states in which each spin
individually has a definite orientation. The normali-
zation is easily found from Eq. (3):

immediately, giving the result zero unless the indices

ji, , j, appearing in (u) and (v) are identical apart
from a permutation. When the result is not zero,
the number of permutations contributing to (35) is

~,(u,)!q!].Hence (35) reduces to

(ujEj~»=F '6„„. (36)

S. TRANSITION TO IDEAL SPIN WAVES

The partition function of our model will now be
interpreted in terms of another model which we call
the ideal spin-wave model. In the ideal model, to each
lattice site j is attached a harmonic oscillator which
has states labeled by an integer N; taking values from
0 to ~. The oscillators possess creation operators q,*
and annihilation operators q; satisfying the relations

b;,"]=L.,*,~.']=o, j:~;,"*]=~;, (41)

g~ g~=g~.

A complete set of states for the whole system is

lu) =IIiL(ui ) '(n~*)"']f0) (43)

These are not only orthogonal but correctly normalized.
In the ideal model, we can define another complete

orthogonal set of states:

I )=II,L(,!)—:(,*).~] j o), (44)

where n~* is defined by

n),~=X—
& Q; exp (iX j)g;*. (45)

The o.q* are creation operators for harmonic oscillators
whose states are labeled by the integers a)„and they
satisfy the relations

L&kp+p ] 4yg &x ax ax ~ (46)

These harmonic oscillators, one attached to each point
of the reciprocal lattice, we call "ideal spin waves. "

The physical spin-wave states la) and the ideal

Since the states lu) are a complete set, Eqs. (31) and
(36) imply that

&=Z.ja&(aj =& lu&(ul. (37)

This verifies the statement that E is not very diGerent
from the unit operator. According to Eq. (31) the unit
operator may be written

I=+ F —'lu)(ul, (38)

so that I and K are identical when 5= —,'. Also Eq. (37)
implies that

E '=P„F-„—'l u)(uj. (39)

Using Eqs. (37) and (39), we have an exact formula
for the partition function:

Z= SpurLexp( —PX)EE ']
=P„F„'g,(a fu)(uj exp( —PK) la), (40)

in which K operates only on spin-wave states j a).
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exp( —P(X—Eo)g(a)=g U, jb),

the coeKcients Ug, being matrix elements

U~, ——(b( expL —P(X—Eo)/(a).

(50)

(51)

Then Eq. (26) will imply a relation

exp( —0(X—Eo)7( a) =Z~ U~. l»
with the same coefficients U&, given by Eq. (51). Note
that the analog of Eq. (51) with (a) replacing (a) is
false. Using Eq. (52), the partition function (40) may
be written

Z= e-&eo p„F -' g,g Ug.(a(N)(N(b). (53)

Comparing the expression (34) for the scalar product
(e(a) with the analogous expression obtained from
Eqs. (43), (44), and (45), we find

(u(a) =F„(u(a). (54)

Hence Eq. (53) becomes

Z=g„,q E„(N(b)(b(exp( —PX)(a)(a(N)

=Q„E„(N(exp(—PX) (e),
where

E =II E(
E(N)=1 for m=0, 1, , 2S,

E(N) =0 for I)2S.

(55)

(56)

spin-wave states (a) are in one-to-one correspondence,
but they belong to totally diGerent Hilbert spaces.
The states (a) are orthogonal and kinematically inde-
pendent, while the states (a) are not. After we have
expressed the partition function (40) in terms of the
ideal states alone, we shall be able to carry through the
whole subsequent calculation with the ideal model,
treating the spin waves as rigorously independent
oscillators.

VVe first construct an operator BC in the ideal Hilbert
space which has the same effect on the ideal spin-wave
states (a) as the Hamiltonian X in the physical Hilbert
space has on the states ( a). That is to say, we require

X( a) = LEO++), ag(I+ eg) j(a)+Pg Qg. j b), (4/)

with the same numerical coefficients ei and Qi„which
appear in Eq. (26). This condition is satisfied by
choosing

X=EO+p&, (++&&)~z &&,

—
~JE ' Q),p, n,~g*np g*apu. l'p, ". (48)

To see that Eq. (48) leads to Eq. (4/), it is only neces-
sary to compute the double commutator

j j X,~,*j,a,*j=—;ZX-ig, r,.~a.„*a,* (49)

the deduction of Eq. (47) from (49) is identical with
the deduction of Eq. (26) from (22).

Suppose next that the exponentiation of Eq. (47)
leads to a linear relation

The Hamiltonian K will be written

X=EO+H +Hi+H2, (58)

where Hm is the last term in Eq. (48) or (57) and
represents the dynamical interaction, while

H„(a)=L +i ai(a), (59)

Hi(a)= e, (a), e.=Pt, a), ei. (60)

To understand completely the sects of the dynamical
interaction, we shall need to evaluate the matrix ele-
ments Uq defined by Eq. (51). The problem is greatly
simplified by the fact that every term in K conserves
the total number of particles P az, so that the only
nonvanishing U~ are those for which

Zi ai=Z~ &),=g. (61)

When q=0 or q=1 the solution is trivial, because then
Hm(a)=0 and Eqs. (59) and (60) give

U&.=exp( P(l.g+ ..))S,. — (62)

The factor E„is essential here in order to take account
of the fact that the summation in Eq. (53) extends
only over physical states (I), which means that each
e; must not exceed 2$.

The formula (55) with X given by Eq. (48) expresses
the partition function entirely in terms of the ideal
harmonic oscillator model. The subsequent calculations
are all based on Eqs. (48) and (55), so that from this
point onward the physical model need not be mentioned.
In Eq. (55) the kinematical spin-wave interaction is
fully described by the factor E„,and it is clear that this
interaction will become rapidly less important as the
value of 5 increases. The dynamical interaction is
contained in the last term of (48), which describes a
mutual scattering of two Bose particles with conser-
vation of momentum. It is convenient that the two
interactions are clearly separated and can be handled

by diGerent methods.
The operator K takes a particularly simple form

when written in terms of the atomic oscillator coordi-
nates (41), namely

X=ED+I. Q; g;*g;+,'JSQ; g(g-;*—g;+)*)(g; —g;+g)

+'~ Z~~ ~ *-n +~*(n n+~)' —(57)

This shows that the dynamical interaction in the ideal
model still acts only between nearest neighbors. The
last term in Eq. (57) is not Hermitian, and so X cannot
be directly interpreted as a Hamiltonian in the ideal
model, as it could in the physical model. But this gives
rise to no diKculties in practical calculations. In
particular, the argument at the end of Sec. 3 proves
that we may calculate all matrix elements of scattering
processes in the usual way, treating BC as if it were an
ordinary Hamiltonian, and ignoring the distinction
between physical and ideal models.

6. EIGENSTATES OF THE DYNAMICAL
INTERACTION
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lal'=2 2;~It(j,k) I'=1. (64)

Operating on such a state, the Hamiltonian H~ gives

H,y= Js p;, &,*»*(o)
X[K (20(j,k) —4(j+~, k) —4(j, k —~)7, (65)

while the dynamical interaction Lt2 gives

H 4=JZ.in *a+ *to)[4(j,j)—4(j, i+5)] (66)

A state
~
a), containing two noninteracting particles

with momenta (X+@)and (2—p), has the wave func-
tion (not normalized)

P,(j,k) =exp[i'. (j+k)] cos[p (j—k)]. (67)

We shall now construct a wave function P satisfying
the Schrodinger equation

(H,+H2)f= (~—Eo—2L)p= e,f, (68)

and representing the same two particles with inter-
action. This is strictly possible only in an infinite
lattice, therefore all formulas in the present section
are to be understood as valid in the limit as S—+~.

We define a Green's function for the Hamiltonian
H& by the equation

(Hi —e.)fexp[i3 (j+k)]G(k—j)}
= 2SJ exp[i' (j+k)]B(k—j). (69)

The function exp[i' (j+k)]G(k—j) then represents
noninteracting pairs of particles spreading out from a
point source at the position k=j, with a well-defined
total momentum 2X. By taking the Fourier transform
of Eq. (69), we obtain an explicit formula for G(j):

G(j)=2SJlV 'P, [ei,+,+ei, , e,]-'exp(iy j), —(70)

with the integration over the singularity defined in the
usual way so that only outgoing waves exist at large
distances. We assume for the wave function f which
satisfies Eq. (68) the ansatz

P=P.+Pg Ag exp[i'. (j+k)]G(k—j—5), (71)

In later sections we shall attack with full generality
the problem of calculating U&, for any value of q. In
this section we study in some detail the mutual scatter-
ing of two spin waves, or in other words the behavior
of the eigenstates of K in the case q=2. We shall use
simple arguments, in order to gain a physical under-
standing of the effects of the dynamical interaction,
before embarking on the heavy mathematics of the
later analysis. This section is to be compared with the
treatment by Bethe' of the corresponding problem in
one dimension.

A general 2-particle state may be written in the form

p=Z; p(j, l )„,*&,*(0), (63)

where f(j,k)=f(k, j) is a conventional 2-particle wave
function in the lattice space, with the normalization
condition

Go(j)=& 'Z.ho —v.] 'exp(ie i), (74)

with a relative error which tends to zero at low temper-
atures.

The function Go(j) has a simple classical interpre-
tation. It satisfies the diGerence equation

z~[Go(j)—Go(j+&)]=~(j) (75)

Imagine an electrical network with a junction at each
lattice point and a wire of unit conductivity joining
each pair of nearest neighbors. Suppose a unit current
is fed into the network at the junction O. The lattice
is considered infinite so that the current Qows out to
zero potential at infinity. The potential at the junction
j is determined by Eq. (75), and is therefore equal to
Go(i)

In addition to replacing G by Go, we replace cos(X L)
by 1 in the last term of Eq. (73), and in the other term
write

cos(X cL) —cos(p ck) = ——', (e L)(~.4), (76)

with coeKcients A~ still to be determined. This repre-
sents an incident plus a scattered wave, as in the usual
treatments of scattering problems in quantum me-
chanics. By virtue of Eqs. (60) and (69), the Schrodinger
equation (68) reduces to

H2$+2SJ exp[i' (j+k)]Pq Aqb(k —j—6)=0. (72)

From Eq. (66) we see that H2$(j, k) vanishes except
when (j,k) are nearest neighbors with k=j+S. There-
fore Eq. (68) is automatically satisfied for all kQ j+8,
by virtue of the form assumed for the scattered wave.
It remains only to satisfy Eq. (72) for k=j+5 by a
suitable choice of the A~.

We write k=j+4 in Eq. (72), where 4 is a nearest
neighbor lattice vector. Then Eq. (72) with (66) gives

2S exp[i' (j+k)]Ay
= —4[4 (j,j)+4 (k,k) —4 (i,k) —4 (k,j)]
=exp[i' (j+k)]icos(p. L)—cos(X L)

+Qg Ag[-,'G(S—4)+-',G(6+eh)
—cos(X A)G(5)]}. (73)

This is a finite set of linear equations from which the
A~ can be determined.

Now we make an approximation which becomes very
good when the particles in the state ja) have wave-
lengths long compared with 8, i.e., when (2 5) and

(y 8) are small. This will always be valid at low
temperatures. The function G(j) appears in Eq. (73)
only with j equal to a nearest neighbor or next-nearest
neighbor lattice vector. For such small values of j, the
main contribution to the sum (70) comes from large p,
and it therefore makes little difference if we set 0 =p= 0
in Eq. (70). Of course, it is still essential to use the
correct Eq. (70) when discussing the behavior of the
wave functions (71) at distances

~
k —j ~

large compared
with b. But in Eq. (73) we may replace G(j) by the
function
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where a =2+@, ~= X—p are the momenta of the
incident particles in the state ( a). These approximations
are all good at long wavelengths. Equation (73) then
becomes

2SA g+Qo A o[Go(6) —2Gp(6 —L)—oGo(6+ 4))
=o(~ &)(~ &) (77)

The solution of Eq. (77) for a lattice of any symmetry
type may be written in the form

Ag ——Q A~V;(o, ~) V;(a)+A'(e. ~)A', (78)

where the I'; are 5 orthogonal second-order spherical
harmonics, each belonging to some irreducible repre-
sentation of the lattice group, and the A, are equal for
I', belonging to the same representation. For the cubic
group there are two irreducible representations by
second-order harmonics, with dimensions 3 and 2.
Accordingly the general form of Eq. (78) for a cubic
lattice is

A g ——A gZg(a)+A oZp(a)+A'(o" ~)5', (79)

0&1"&-,', 0 &I'&-,',
0&v,f&-,', 0&r2f&-,'. (89)

Precise values for the constants may be obtained
from Eq. (74) after converting the sum into an integral.
Equation (74) gives

Gp(j)= i Q 'cos(j&h+ j&y+ jos)dxdydh, (90)
J J

rpf= 6[Gp(110) Gp(211))
= —,

' —
3[Gp (110)—Gp (200))

—
p [Go (110)—Gp (220)). (88)

In the electrical analog interpretation of Eq. (75),
every one of the quantities in square brackets in Eqs.
(85)—(88) is a potential difference between a nearest
neighbor of 0 and a junction more distant from O.
Therefore all these quantities in square brackets are
positive, and we have proved without any numerical
work the inequalities

Zg(s)=(0 L)(e 4)—P o,r;DP,
123

Z, (A) =go;r;A;o ,'(e ~)—A'-,
123

(81) Q = 16or'(3 —cosx —cosy —coss),

(80) where for the simple cubic lattice

(91)

with three independent coeKcients A1, A2, A'. %hen
Eq. (79) is substituted into (77), the result is

lI"=6 ~' Q
' cosx(1 —cosy)dxdyds=-', . (92)

A'= (12S) ', A;=-,'[2S—I',] ', i=1, 2, (82)

where the 1'; are constants, depending only on the
geometry of the lattice and defined by the relations

P z;(s)G, (8+4)=r;z;(cL), i=1, 2. (83)

For the face-centered cubic,

Q =32m'(3 —cosx cosy —cosy coss —coss cosx), (93)

YVe shall now determine these constants explicitly for
the three types of cubic lattice.

If the lattice is simple cubic Z1 vanishes identically,
and if it is body-centered cubic Z2 vanishes. In either
case, Eq. (79) reduces to the form

Ag=-,'[2S—r]—'[(o' a)(~.X)——p, (e ~)a']
+ (12S)—'((r. ~)h'. (84)

Equation (83) gives, for the simple cubic lattice,

r'= 6[Go(100)—Gp(110))
=—,

' —$[Gp(100)—Gp(200)). (85)

and for the body-centered

r P =4[2Go (111)—Go (200)—Go (220)]
=-',—(4j3)[Gp(111)—Gp(222)). (86)

For the face-centered cubic lattice neither term in
Eq. (79) vanishes. In this case the two constants r, in
Eq. (83) are given by

r if——4[2Gp (110)—Gp (200)—Gp (211))
= 6

—4[Go(110)—Go(211))
—2[Go(110)—Go(220)). (87)

r&i=4 Q '[cosx cosy(2 —cos2s)
~i J

—cos2s)dhdyds =—,'„(94)

r, =6 Q-' cosx cosy(1 —cos2s)dxdyds= —,'. (95)

For the body-centered cubic,

Q=64w'(1 —cosx cosy coss}, (96)

I'=4 " t "Q '[2cosxcosycoss

—cos2x(1+ cos2y) ]dxdyds = ip. (97)

To summarize the results of this section so far, the
2-particle eigenstates of K are given by Eq. (71), with
the Green's function G(j) given by Eq. (70) and the
constants Ap by Eqs. (79), (82) and (92)—(97). These
are ordinary scattering states. The question now arises
whether there can exist states of another kind, in which
two particles are permanently bound together by the
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dynamical interaction. Bethe' found that such states
do exist in the one-dimensional theory.

Such a bound state, if any exists, must have a wave
function of the form (71), without any incoming wave

P,. The Green's function (70) will be exponentially
decreasing at large distances, having an energy below
the threshold 2e), at which dissociation into two free
particles can occur. Supposing the wavelength of the
center-of-mass motion to be long compared with 8, we
may as before approximate G(j) by the function

G.(j)=& ' Z,Leo v,+P—] 'p(-e j) (98)

in Eq. (73), where p is either zero or positive. This
function satisfies instead of Eq. (75)

Z~[G.(j)—G (j+~)3+PG.(j)=~(j). (99)

The coefficients A& now satisfy Eq. (77) without any
inhomogeneous term on the right-hand side and with
G„replacing Go. The argument leading to Eq. (82) gives

2$—I';= 0, (100)

either for i =1 or i=2, as a necessary condition for a
nonzero set of A& to exist. Here F; is defined by Eq.
(83) with G~ for Go. Formulas for 1'; analogous to Eqs.
(85)—(88) are easily derived. But now the electrical
interpretation of Eq. (99) identifies G„(j) with the
potential at vertex j in a "leaky" network where every
junction is connected separately to earth by a leak of
conductivity p. The current in each link of the leaky
network is obviously less than that in the original
network. Therefore the inequalities (89) still hold for
the new I';, and Eq. (100) is impossible.

We have proved that no bound states exist for two
spin waves traveling together with a wavelength / long
compared with b. The approximations made were of
relative order (8/l)~ at most, whereas the condition
(100) for a bound state to exist fails by a factor greater
than 4. There are therefore certainly no bound states
until / becomes quite small, comparable with 8. It is
likely that no bound states exist at any wavelength,
but we leave this question open. An exact discussion of
Eq. (73) for general values of 2 would be necessary to
settle the question. In any case, it is only the bound
states at long wavelengths which might, if they had
existed, have had an observable effect on the thermo-
dynamic behavior of the spin-wave system at low
temperatures.

The fact that the spin-wave interaction leads to the
formation of bound states in one dimension but not in
three is not unexpected. It is well known in elementary
quantum mechanics that any attractive potential well
will bind a particle in one dimension, while in 3 dimen-
sions the potential has to exceed a critical strength to
produce binding. The condition (100) is just a state-
ment of the critical interaction strength necessary for
binding in the 3-dimensional spin-wave system. The
quantity (2S) ' is the effective coupling constant" of
the dynamical spin-wave interaction, since it appears

in the Hamiltonian (57) as the ratio of the interaction
term H2 to the "kinetic energy" term H&. The critical
coupling constant for the simple cubic lattice is about
5, and this can never be reached since 2$ must be an
integer.

Our treatment would break down in one dimension
because the integrals (91)—(97) would not converge.
For a simple square lattice in 2 dimensions, the method
succeeds and gives an effective F lying between 0 and —,'.
So for spin waves, just as for the weak attractive
potential in elementary quantum mechanics, there are
no bound states in 2 dimensions.

The method of this section could in principle be
applied in order to obtain an exact enumeration of the
eigenstates of BC describing the interaction of 3 spin
waves. But the details would become formidably com-
plicated even with q=3, and the method is evidently
unsuited for discussing larger values of q. We therefore
postpone the discussion of the simultaneous interaction
of 3 or more spin waves until Sec. 9, when we shall
return to it with more powerful methods.

"1. SCATTERING OF TWO SPIN WAVES

As a simple application of the results of the last
section, we shall calculate the cross section for the
scattering of two spin waves with wave vectors e= 2
+p, ~=X—p into a state with wave vectors 3+p,
2—y. All wavelengths are assumed to be long compared
with S.

When the separation r=
~ j—k ( is large, the outgoing-

wave Green's function (70) takes the asymptotic form

G(j—k) = (3V/2m gpss') [e' "/r j (101)

independent of X. The wave function (71) becomes in
the asymptotic region

P= exp[is (j+k)j[cos(p (j—k))+ (V/4 ) (e'""/r)

X f (2S)—'(e g)+X~PA~Z~(y)+X2PA2Z2(p)) j. (102)

Here p is the vector with magnitude p in the direction
of (j—k), and A &, A&, Z&(y), Z2(p) are defined by Eqs.
(80)—(82). The coefficients X&, X2 are given by

[Oi2&33& X2 L1 4 0), (103)

for the simple, face-centered, and body-centered
lattices, respectively.

According to the discussion at the end of Sec. 3, the
scattering cross section is given directly by the intensity
of the scattered wave in Eq. (102). The three terms of
the scattered wave constitute, respectively, S-waves,
D-waves of the 3-dimensional representation of the
cubic group, and D-waves of the 2-dimensional repre-
sentation. Each term is given with a relative error
tending to zero at long wavelengths. In the "near zone"
of the wave function (71), all three terms are of the
same order of magnitude. However, in the "wave zone"
the D-waves are weaker by two powers of (pb), which
means that the D-wave terms in Eq. (102) are com-
parable with the error in the S-wave term.
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or cosP=~'7' cosP', (105)

and so the cross section (104) is consistent with the
principle of detailed balance. Since we have been using
a non-Her mitian Hamiltonian, the achievement of
detailed balance is not automatic and provides a check
on the physical correctness of our method.

At long wavelengths, the energy ~ of a spin wave
with wave vector e becomes

e.= —,
' JSypo'8', (106)

according to Eqs. (17) and (24). It is convenient to
introduce the geometrical factor

v=PV &=I 1,2&, 3X2 4"] (107)

for the simple, face-centered, and body-centered lat-
tices, respectively, and to define temperature by the
dimensionless ratio

Then
0= 3kT/(2~JSyov). (108)

(e./k T)=a'V &/(4ir8), (109)

and the cross section (104) becomes

Therefore to the leading order in (pB) the scattering
is pure 5-wave and is isotropic in the "center-of-mass
system. "The total cross section is given by the 5-wave
component of Eq. (102), and is

/8~S 30 cos (104)

where g is the angle between the initial wave vectors
e and ~ If o. '=X+p and ~'=2 —

y are the two wave
vectors of the final state and p' the angle between
them, then

appears only in the ratio of H2 to H&, the contribution
of the neth Born approximation to the scattering would
be just the neth term of an expansion of the exact
solution in powers of (2S) '. In the exact solution, the
only place where (2S) ' appears is in the coefficients A;,
and according to Eq. (82),

(113)

The Born approximation series is comfortably con-
vergent because of the smallness of the I';. This is, of
course, connected with the nonexistence of bound states
of two spin waves.

The dynamical interaction between two spin waves is
according to Eq. (57) a nearest neighbor interaction,
taking eGect when the two reversed spins are at posi-
tions j, k, with k= j+6.When two spins come together,
they may interact first at k= j+5i, then propagate and
interact again at another nearest-neighbor position
k=j+82, and so on. The mth Born approximation
describes the process in which the interaction occurs
just m times before the two spins finally separate. The
exact solution describes these multiple interactions
completely. The propagation distance between multiple
interactions is of the order of 8 and so the effect of
retardation between interactions is negligible for wave-
lengths long compared with 8. The neglect of this
retardation produces the approximation (77) and leads
to the simplicity of the solution (82).

With neglect of retardation, the eGect of multiple
interactions is merely to multiply the first Born
approximation scattering by a constant "enhancement
factor" given by

Z=2s- V&
'OS-'(e.e, /'kT') cos'g (110) [1—(F,/2S) j-'. (114)

Now the Bloch theory' gives, for the mean density of
spin-wave energy at temperature T,

The reciprocal of the mean free path between collisions,
for a spin wave with energy e, traveling through a
lattice in thermal equilibrium at temperature T, is

given by substituting e for e, in Z and averaging over g.
Thus the mean free path is

X,= Pm@ (-,') (e./kT) j 'S'V&e '~'- (112)

For a given spin wave with e independent of T, this
varies with temperature like T '~'. For an average
spin wave in thermal equilibrium, the mean free path
is proportional to T '~2.

8. CONVERGENCE OF 'ZHE BORN
APPROXIMATION SERIES

Instead of calculating the wave function (71) in
closed form, we could have carried through a Born
approximation treatment of the scattering of two spin
waves, taking H~ as the unperturbed Hamiltonian and
H2 as the perturbation. Because the quantity (2S)—'

Because of the structure of the interaction, the S-wave
is not enhanced at all, and the two kinds of D-waves in

the face-centered lattice receive diferent enhancement
factors. The enhancement is in all cases numerically
small because the probability of escape after each
interaction is greater than the probability of another
interaction.

A more general proof of the convergence of the Born
approximation series is the following. Any two-particle
state may be written in the form

4=+i„iJ(Z, p)op*~„*I0),

I+I'=2 P),.Iy(&,p) I'=1.
Equation (48) gives

Zxy(~&+~a)4'(~&p)+& +~ l0)~

(115)

(116)

(117)

2~& Z&w. I'~+. .
&&0(&+t, t —e)~.*~.*lo). (118)

Applying Cauchy's inequality to Eq. (118), we 6nd

l&A I'= V'& 'Z~. IZ. I'~+..~.V(~+e s —e) I'
&-'~'& 'Z~. lf(~ s) I'Z. II'~ 'I' (»9)
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By Eqs. (2'/) and (24),

P, II'q„&l'= 4E Ps[1 —cos(8 X)j[1 —cos(8.p)j
(2%(JS)—'sic„&—,'E(JS) '(ei,+e„)'; (120)

hence Eq. (119) gives

The numerical factor (8S')—& does not have any special
signi6cance, and it could be improved by a more careful
handling of the inequalities. The important point is
that the factor is definitely less than unity even for
S=~. Therefore the series expansion

(II,+II,)—y P ( 1)mII, i( I—I, II i) m—
P (122)

converges with uniform rapidity for every 2-particle
state f. The convergence of Eq. (122) is precisely the
meaning of the statement that the Born approximation
series converges for all 2-particle processes.

It is not clear whether the convergence will extend to
interactions of more than 2 spin waves. Since the
interaction energy of q particles is at most proportional
to —,q(g —1), while the kinetic energy is proportional
to q, the ratio between them will increase with (q—1).
For q=2, the ratio between successive Born approxi-
mations is at most [I'/2Sj, or approximately [10Sj '

for the simple cubic lattice. Therefore we may expect
the Born approximation series to converge for any
number of particles up to 105. It seems physically
plausible that when a substantial number (say 10 S or
more) of reversed spins are close together, they may
form a bound state with lower energy than the same
number of free spin waves, and the Born approximation
will then certainly fail.

In the following sections we shall use the Born
approximation series freely. The justification for this
is that the series can always in principle be replaced by
the exact solution of an interaction problem involving
a finite number of particles. And in practice we shall
only be concerned with the case q=2 where the series
is known to converge.

9. GREEN'S FUNCTIONS OF THE DYNAMICAL
INTERACTION

We now return to the general analysis of the matrix
elements U&, defined by Eq. (51). It is convenient to
study the quantity

Ui,f (0l exp(Q&, hinq) e——xp[—P(K—Eo)j
Xexp(gi, fbi, *)

I 0), (123)

where fi, and hi are undetermined parameters. By
Eq. (44), Uo, is the coeKcient of

II),[(4!~d) '4'"fe"g (124)

in UM. Equation (123) is expanded in a Born approxi-

mation series by using the identity

s yam
—1

expl P(X I-"o)l= 2 (—1) dP, I dP
=o Jo ~o

X (exp[(pi —P)XilIIo exp[(P& —Pi)~i)II& IIs

with
Xexp( —P„Ki)}, (125)

Kl= K +0 II2 IIm+IIi ~ (126)

(q!)
—'(m!)-' exp( —PqI); (128)

(b) corresponding to each intermediate vertex at
which lines y, e are ingoing and lines p, ~ are outgoing,
a factor

—,
' JN—'B(y+~—

y
—e)[I',.&—+I' '—$ (129)

(c) corresponding to each initial or final vertex at
which the line 3 is incident, a factor fi, or hq-,

(d) corresponding to each line 2 joining vertex r to
vertex s, a factor

t!(P. P.) expL —e (P.——P.)) (13o)

where e(x) = 1 for x)0, 8(x)=0 for x &0 [if the vertex
r is initial, we write 0 for P„ in. Eq. (130), and if vertex
s is final we write p for p,);

(e) an integration from 0 to p with respect. to the

"G.C. Wick, Phys. Rev. 80, 268 (1950).

Each factor H2 is a sum of products of particle creation
and annihilation operators according to Eq. (48). After
expanding H2 in this way, each factor containing K&
becomes a c-number, because X~ is diagonal in the
free-particle states.

Following the method of Wick, "the individual terms
in Eq. (125) can be broken up into "normal products"
in which creation operators lie to the left of annihilation
operators. As a consequence we find

Uof=Zg U~x(G)

where Uof(G) is a contribution from a particular
"Feynman graph" G. The graphs have a simpler
structure than in quantum electrodynamics. ' Each
graph contains a certain number (2q+im) of vertices,
of which q are called initial, q are 6nal, and ns are
intermediate. It contains (q+2mz) lines, each joining
two vertices and each having a direction marked in it.
An initial vertex has one outgoing line attached to it
and none ingoing. A anal vertex has only one ingoing
line. An intermediate vertex has two ingoing and two
outgoing lines.

The intermediate vertices are labeled from 1 to m,
and to the vertex j is attached an integration variable
P;. The initial and final vertices are labeled from 1 to
q. To each line is attached a reciprocal lattice vector X.

Given G, the contribution Ui,f(G) is built up from
the following factors:

(a) an over-all factor
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variable P„ for each intermediate vertex, and a sum-
mation over the variable X, for each line;

(f) a factor 2 for any pair of lines which have a
common vertex at both ends.

Every graph G is composed of one or more connected
parts, say n& identical parts G&, e& identical parts G2,
and so on. The relation between Ub f (G) and the Ub f (G„)
is then

U f(G) =II (( .!) '[Uv(G. )]""&, (131)

the factor (n„!) ' arising because a permutation of the
labels of the vertices between the identical parts G„
does not give rise to distinct labelings of G. Summing
Eq. (131) over all G gives by Eq. (127)

Ubf= exp[kg Ubg(G)], (132)

10. KINEMATICAL INTERACTION

According to Eq. (55), the complete partition
function is

Z=e 'Q, bUb. V b, (136)

V.b= 2-(glu)&-(ul &) (137)

We shall now study the V b, which embody the effects
of the kinematical interaction. The idea is to bring V,b

into a form similar to that obtained for Ub, in Sec. 9.
V,b is the coeflicient of Eq. (124) in the expression

vrb=Z-(0lexp(Zb fb~b) lu)
XE.(ul exp(P, h,n, *)

l 0). (138)

Now write

where the summation in the exponent is taken only
over connected G. The sects of disconnected graphs
are exactly taken care of by the exponentiation.

The exponent in Eq. (132) may be written

y, =N '*Pl ex—p-( —iX j)fb

X =N ** +1exp(ik j)hb,

so that by Eq. (45)

(139)

Pg Ubg(G) =Pb„F1(X,P)hb f„ Zb fbm =Z; e,~„Zb hb~b*= Z, x,n, *. (14o)

(~p )h h f f + (133)
Tllell Eq. (138) becomes

~1~29192

where 1',(Xl . X„pl . .p, ) is a sum of contributions
from all connected graphs G with a given number q of
initial and final vertices. The function I', is called the
q-particle Green s function of the dynamical interaction.
It describes completely the behavior of a system of q
spin-waves interacting with each other.

Each Green's function I', can in principle be calcu-
lated as the solution of a q-particle Schrodinger equation
which can be written down in closed form. For example,
F2 satisfies the equation

(oIexp(4»~1)lu)=( u)-'4;",

and therefore Eq. (141) gives

V~.=II [E-E(u)(u ) '(& x )"]

(142)

vfb II [E-(0I exv (4»2! ) l u)
XE(u)(ul exp(x, g, *)l0)], (141)

where the matrix elements refer to states of the single
harmonic oscillator at the lattice site j, and E(u) is
defined by Eq. (56). Now

—(8/BP) I'2 (21X2,121It2) = (21+e)1+8 2)I'2 (XP 2, t21122)

—(-,'JN —') p 8(0.1+22—vl —v2)
&1&2

XP 1 2 +F 1 2 ]( [Fl (vl Pl)vl(v2 t22)

+1 (" p)1 (" p)]+1 (v" p p)) (134)

=exV 2 2 ~(n)(4»X1)"
n=1

The coeflicients e(n) are here defined by

2S

Z~(n)y"=log E(n) 'y" .

(143)

(144)
n=1 n=o

The equation for I'& is trivial and has the solution

The equation for I', is always linear, with an inhomo-
geneous term which contains the 1'„with P &q.

In practice the I', are more conveniently computed by
using the Born approximation, that is to say by calcu-
lating the contributions from connected graphs with q
initial and final vertices. This method at least leads to
simple and reliable estimates of the order of magnitude
of the various terms. However, since for each q~&2

there is an infinite number of connected graphs, the
practicability of the method depends on the convergence
of the Born approximation series which was discussed
in Sec. 8.

The e(n) begin with the values

e(1)=0, e(2) = e(3)= = e(2S)=0,
(145)

t;(2S+1)= —[(2S+1)!]',

and they satisfy the recurrence relation

re(r)
=0, e&25.

~ n 2s (n —r)!—(146)

In particular, we have

e(n) = [(—1)"—'/n] S= -', (147)

e(n) = [(—1)" '/n]2' 2" cos(x12rn), S=1. (148)
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The exponent in Eq. (143) will be expressed, by
analogy with Eq. (133), in the form

ZZ ( )(~,x;)"=E~ (~,~)fJ.
j' n=1 Xp

Inserting Eqs. (152), (154), and (155) into (136) gives

Z=e & 0+
Q X]. ' ~ )l, q/J]. ~ ~ ~ ltt q PQ

ni

x P g II(,i)- rtl', (»,Q&)

+ Q ~2(~1~2)tilp2) fvlfv2A&1A&2+ ' ' '
~ (149)

~1)~201ttt2

n1n2 ~ ~ ec1rng

ms

The function A, (pi p„Xi 3,) is called the q-

particle Green's function of the kinematical interaction.
Using Eq. (139), we find the explicit form of t!„
d, (pi p„3i X,)=e(q)iV' 9 P (p,—2,) . (150)

r=1

In particular, by Eq. (145),

6$(@pal) '5pi) A2 A3 ' ' ' 62s= 0. (151)

11. EXACT FORMULA FOR THE FREE ENERGY

We now put the results of Secs. 9 and 10 together
into the partition function (136). The summation over
states u, b may be written

ZLil(t~l&~~) ']=K(q ) ' 2, (152)
~1 ' '~qual' Pq

where X~, , 2, are the wave vectors of the q particles
in state a, p~, , p, are the wave vectors in state b,
and each X„and p„ is summed independently over the
reciprocal lattice. Next, by Eqs. (124), (132), and (133),
Ub may be written

We have here replaced the summation variables 2, p
by (P) '2, (Q') 'p, so that the summations over P',
Q' become trivial and merely cancelled the (q!) ' in
Eq. (152).

The multiple sum in Eq. (156) will now be partially
disentangled. We say that two of the factors F;, 6; are
convected if either (a) they possess an argument 2, or
p, . in common, or (b) they belong to a chain such as
I';, 5~, F~, 5;, in which each consecutive pair has an
argument in common. The factors F; and 6; can then
be grouped together into blocks, so that factors within
the same block are connected, while factors in diGerent
blocks are not. The summations over 2 and p in
different blocks are independent, and Eq. (156) breaks
up into an exponential series, the exponent of which is
a sum over single blocks. Hence we find an explicit
formula for the free energy per atom at temperature T,

A = —(AT/N) logZ

= (&oI&) (tt&) ' 2—
q 'A1 ~ .Xqy1 ~ ~ .Pq PQ

~-=Lll(b ' ') '*jZ
PQ n1n2 ~ ~ ~

X II(~') 'll I''(P&,QP) (153)

Here P is summed over the (q!) permutations of
(Xi, , 2,), and Q over the permutations of

(pi, .
, p,).The e; are summed over all integer values

consistent with

im, = q. (154)

l'. =Lil(&! !) '3Z
P'Q' mIm2 ~ ~ ~

mi

x rl(~;t) 'rt ~'(Q'p, p'&) (155)

The meaning of I', (PP,Qp) is the following. The final
product in Eq. (153) is a product of Ni functions I'&,

e2 functions F2, and so on. The arguments ~,
p&,

. , p, are to be distributed in some fixed way
among these functions, and then permuted by means
of the permutations P and Q. In the same way, Eqs.
(143) and (149) lead to the result

n1n2 ~ ~ ~ m1m2 ~ ~ ~

m '

X ri(m, !) 'gh, (ti, X) . (157)

This looks almost identical with Eq. (156). The differ-
ence is that the sum over P and Q now extends only
over permutations which connect all the factors I';
and 6; into one block. This makes every term in Eq.
(157) tend to a finite limit as 1V—+ ~, while in Eq. (156)
there was a mixture of terms proportional to various
powers of S.

Consider for example the terms with m~=e~=q,
m;=n, =O for, i) 1. Because of Eqs. (135) and (151),
these may be written

& = —(PN) 'P, q-'P e pL —qP-(L+,)j
= (P1V)

—'
Q&, log(2 —expL —P(J+ei)1). (158)

This is the free energy of a perfect gas of noninteracting
spin waves, each carrying the energy (I,+cz). It is the
total free energy in the linear approximation of the
Bloch theory. ' The corrections arising from spin-wave
interactions will be given directly by the various terms
in Eq. (157) involving at least one I'; or d„. with i) 1.

With the derivation of Eq. (157) the purpose of the
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present paper is achieved. We have a starting point for
detailed calculations of the thermodynamic effects of
spin-wave interactions. Such calculations will be carried
through, and quantitative results obtained, in a
following paper.
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The free energy of an ideal Heisenberg-model ferromagnet is
calculated as a power series in the temperature T, using the
mathematical machinery developed in an earlier paper'. The spon-
taneous magnetization in zero external field is given by

fM(T)/3f (0)g=S o(Pt' o—gttst' u—stt't' o—sS %+—O(tt'ts).

Here 8 is the temperature in dimensionless units, and cp cI c2 83
are positive numerical coeKcients which are computed for the
three types of cubic crystal lattice. The first two terms are the
result of the simple Bloch theory in which spin waves are treated
as noninteracting Bose particles with constant effective mass. The
a1 and a2 corrections come from the variation of eQ'ective mass
with velocity. The a3 term is the lowest order correction arising
from interaction between spin waves. This result is in violent

contradiction to earlier published calculations which gave inter-
action eHects proportional to T"4 and &.

The smallness of the thermodynamic e8'ects of spin-wave
interactions is discussed in physical terms, and partially ex-
plained, in the introduction of this paper. A general proof is
given that the thermodynamic effects of the "exclusion principle, "
which forbids more than (25') spin deviations to occupy the same
atom, are of order exp( —as ') and give zero contribution to any
finite power of 0. The residual dynamical interaction between 2
spin waves gives rise to a second virial coeScient b2 which is
calculated and shown to be of order T@2.The us term in the mag-
netization is proportional to b2'. EKects of interaction of 3 or
more spin waves are estimated and found to be of order 8~ or
higher.

1. INTRODUCTION

' 'N the preceding paper, ' a mathematical formalism
~ - was constructed to describe the motions of spin
waves in an ideal ferromagnetic lattice. In particular,
an exact formula (I, 157) was derived for the free energy
of such a lattice. In this paper the free energy will be
evaluated as a series expansion in powers of the tem-
perature T. The results may be expected to provide an
accurate description of the thermodynamics of the
model in the range of low temperatures, say below one
quarter of the Curie temperature. The notations and
definitions of the earlier paper will be used without
further explanation.

The quantity which is of the greatest practical
interest is the spontaneous magnetization sM(T) of
the lattice in zero external field. In the linear approxi-
mation of the Bloch spin-wave theory, ' this magnetiza-
tion is given by the formula

[M(T)/M(0) )=S—f (-')fist'. (1)

Here f(u) =gt"n is the Riemann zeta function, 5 is
the spin of each atom, and 0 is the dimensionless tem-
perature defined by Eq. (I, 108). Considerable uncer-

*Research supported by the National Science Foundation.' F. J. Dyson, preceding paper LPhys. Rev. 102, 1217 (1956)j.
This paper will be quoted as (I), and equations in it will be quoted
as (I, 157) etc' F. Bloch, Z. Physik 61, 206 (1930); 74, 295 (1932).

tainty has existed concerning the accuracy of this
formula. Kramers and Opechowski' have calculated
additional terms in an expansion in ascending powers
of 8, and find the next term to be of order O'. However,
Schafroth, 4 using the spin-wave formalism of Holstein
and Primakoff, ' finds a term in 0')" with a positive co-
efricient, which would interfere seriously with the 0"'
term in the temperature range of current experiments. '
Van Kranendonk' by another method arrives at a term
in 07I with a diGerent coefFicient. There is a clear
disagreement between these three published results.
The starting point of the present investigation was an
attempt to decide which of them is correct.

The Bloch formula (1) is obtained by assuming that
spin waves do not interact with one another, and that
the energy of a spin wave is proportional to X ', where
X is the wavelength. The theoretical deviations arise
from three causes: (a) deviation of the energy spectrum
from the X ' law; (b) true dynamical interaction be-
tween spin waves; (c) kinematical interaction between
spin waves due to the fact that a single atom cannot
carry more than 2S units of reversed spin simultane-

3H. A. Kramers, Commun. Kamerlingh Onnes Lab. Univ.
Leiden, 22, Suppl. No. 83 (1936);W. Opechowski, Physics 4, 715
(~937).

e M. R. Schafroth, Proc. Phys. Soc. (London) A67, 33 (1954);
T. Holstein and H. Primakoff, Phys. Rev. 58, 1098 (1940).' L. Noel, J. phys. radium 15, 74S (1954).' J. Van Kranendonk, Physica 21, Sj., 749 and 925 {1955).


