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The interacting spin system of the Heisenberg model is brought into contact with a 
system of free Bose particles which are independent of the spins. The partition function 
of the combined system differs from the original one only by a trivial factor. Without 
changing the thermodynamical properties, the total Hamiltonian H is transformed by 
means of nonsingular operators T according to T H T  -1. The interaction between 
the spins is thereby eliminated to lowest order whereas the energy of the free Bose 
particles changes to the well-known energy dispersion of ideal spin waves. The inter- 
action part of the transformed Hamiltonian describes ordinary scattering processes 
between two particles at least. Furthermore it allows at once for a low-temperature 
expansion in analogy to diagrammatical expansions of normal many particle systems. 
The expansion is studied in more detail. It is shown that contact can be made between 
this expansion and the low-temperature treatment of the Heisenberg model by DYso~. 
In particular, the lowest order contributions to the partition function may be calculated 
from a reduced Hamiltonian which coincides with DYsoN's Hamiltonian for ideal 
spin waves with dynamical interaction. Therefore it is proved once again that DYsoy's 
kinematical interaction is negligible at lowest temperatures. 

I. Introduction 

The low- tempera tu re  p roper t ies  of the Heisenberg  fe r romagne t  are 
well descr ibed by  the concept  of spin waves which were in t roduced  into  
the  p r o b l e m  by  BLOCg 1. The spin waves are the exci ta t ions  of lowest  
energy which  de te rmine  the low- tempera tu re  expans ion  of the  pa r t i t i on  
funct ion  or  the free energy, respectively.  In  the l imit  of very  low tempera-  
tures one m a y  pass f rom phys ica l  spin waves to ideal  spin waves which 
obey  Bose statistics. H ighe r -o rde r  con t r ibu t ions  to the free energy then 
result  f r om the in terac t ion  be tween the ideal  spin waves. This in terac t ion  
consists of two par t s ;  first  we have the dynamica l  in terac t ion  conta ined  
in the  Hami l ton ian ,  second we have the k inemat ica l  in te rac t ion  which 
results  f rom the t rans i t ion  f rom physical  to ideal  spin waves. I t  is jus t  
this in te rac t ion  which br ings  all  the difficulties in to  the p rob lem.  

The  solut ion of the p r o b l e m  was given by  DYSON 2 in his m o n u m e n t a l  
work  on spin wave interact ions.  He showed tha t  the effect of k inemat ica l  
in terac t ions  is negligible at  low tempera tures ,  therefore  we have to 

1 BLOCH, F.: Z. Physik 61, 206 (1930); 74, 295 (1932). 
2 DYSON, F. J.: Phys. Rev. 102, 1217, 1230 (1956). 
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consider only the dynamical interaction which adds in lowest order a 
TS-term to the free energy of free spin waves. 

This paper deals with the same problem, but we shall use a method 
which is quite different from the one used by DYSON. We add a Hamil- 
tonian of free Bose particles to the Heisenberg Hamiltonian. By a 
simple trick the two independent systems will be brought into contact 
with one another without changing the partition function of the combined 
system. A series of transformations will then bring the Hamiltonian in 
such a form that the interaction between spins is eliminated to lowest 
order whereas we obtain some interaction between the Bose particles. 
In particular the energy dispersion of the free Bose particles changes to 
the one of the well-known ideal spin waves. The total Hamiltonian 
describes an Ising model spin system in a spin wave bath. Furthermore 
the resulting interaction between the spin waves and the spins at once 
allows for a low-temperature expansion of the partition function in 
analogy to diagrammatical expansions of normal many-particle systems 
which obey Bose statistics. When we confine ourselves to the lowest 
order contributions, we regain DYSON'S dynamical interaction. 

We emphasize the fact that we need not introduce the ideal spin 
waves into HEISENBERG'S Hamiltonian, therefore there is no kinematical 
interaction and we are not confronted with such difficulties as in 
DYSON'S treatment. 

H. The Heisenberg Model of Ferromagnetism 

We consider a three-dimensional crystal of X lattice sites with 
periodic boundary conditions. To each lattice site j is attached a spin 
vector o'j with the usual commutation relations, 

0 "x [ i '  GY] ~--- C~ij" i O'd etc. (1) 

and the magnitude S which implies 

~2 = s ( s  + 1). (2) 
The Hamiltonian is given by 

H = - e ~, ~ j -  �89 ~ V~j e, ~j (3) 
d ij 

where the summations extend over all lattice sitesj. The first term repre- 
sents the magnetic energy of the spin system in an uniform magnetic 

~" along the z-axis with e = @ ,  where/-to denotes the magnetic field 

moment coupled to the spin. The exchange integral, 

V~j= V(ir~-rjl), V~--0, (4) 
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between spins at different lattice sites must be positive in order to 
describe a ferromagnetic behaviour of the system. 

In the standard representation the aZ-components may be chosen 
diagonal with the eigenvalue spectrum - S ,  - S +  1 . . . .  , S. As usual we 
introduce the operators 

nj=S-G  } 
- i ( 5 )  

where n is diagonal with eigenvalues 0, 1, ..., 2S. From (1) one deduces 
the commutation rules 

[a/, a+] = 3,y (i__~_). (6) 

In terms of the new operators the Hamiltonian is given by 

H = E  o +~ Z n,-�89 Z V~y(ni nj + 2 S  ~+ a~-) (7) 
i U 

with 
E o = - W ( e S + � 8 9  ~=e+SVo. (8) 

Eo is the groundstate energy and Vo denotes the zeroth Fourier component 
of the potential 

vp = ~' V(rj) e-i p ,-j; (9) 
J 

the X possible p vectors all lie in the unit cell of the reciprocal lattice. 

The operator n, measures the component of the reversed spin at 
lattice site i, laxly speaking it is the number of spins (i. e. of reversed 
spins); similarly we may call the o "+ and a f  the creation and annihilation 
operators of a spin (i. e. of a reversed spin of magnitude 21-). 

III. Introduction of Spin Waves 

We now introduce a system of Bose particles independent of the spins 
by the definition of the Hamiltonian 

HB = b? b,, (10) 
i 

i.e. to each lattice site we attach a creation and an annihilation operator 
b, b + with the commutation rules 

[b,, bf] =5,~. (11) 
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The partition function of this system is simply given by 

ZB = (1 - e -p ~ ) - w .  (12)  

Combining the two systems, the partition function Z =  Trace e -~n of the 
Heisenberg model may be written as 

Z = e - P e ~  w . z , ,  Z t = T r a c e e  -'8nl (13) 
o',b 

where the trace* extends over all states of the total Hamiltonian 

Hl=aZ(n,+b + bi)-�89 Z k~i[ni ni+(r + +b +) a-f. 2S] .  (14) 
i i j  

This operator consists of the spin Hamiltonian (7), of the Bose particles 
Hamiltonian (10), and of the contact term - S .~. Vis b + a~-. The addi- 

tJ 

tion of the last term will not change the partition function as may be 
seen by calculating the trace on the Boson part. 

Strictly speaking, the operator H,  is no longer a Hamiltonian as 
it is obviously non-hermitian by the addition of the contact term. 
Furthermore the dynamical properties of the system described by the 
"Hamiltonian" H1 do not coincide with those of the original system 
for the same reason. On the other hand we are interested only in the 
thermodynamics of the Heisenberg model, i. e. in the partition function Z;  
but this is equal to Z1, up to a trivial factor, as may be seen from (13). 

The Hamiltonian H,  may now be transformed by a nonsingular 
operator T according to 

HT=TH1 r -1 (15) 

without changing the partition function. First we choose 

-r_~, + b~ 
r,=e ' (16) 

and obtain with the help of the formulas (A.1) of the Appendix 

H2=~ ~-'(ni+ b: b')-�89 ~ I/~' {(ni+a: bi)(n' +af b')+ I 
* (17) 

This Hamiltonian splits up into a number of terms with different meaning. 
The pure spin part in (17) is equal to the Hamiltonian of the Ising model 

H,~i.g= c~ s ni--�89 E "~j ni n j, (18) 
i i j  

* In the following the symbol Trace always means Trace. 
a ,b  
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whereas the part which contains only Boson operators is given by 

H o = c~ ~ b + b~- S ~" l/~j b + bj. (19) 
i U 

Fourier transformation of the Boson operators leads directly to 

= X b, + b. (20) 
P 

where 
% = ~ + S ( v o -  v.) (21) 

is the well-known energy of the ideal spin waves 2. The rest of the Hamil- 
tonian H2 describes the interaction between the Ising spin system and 
the spin waves. We might say that the total system looks like an Ising 
spin system in a spin wave bath with particle exchange between spins 
and spin waves. 

There is some analogy to the Bohm-Pines a treatment of electron- 
electron interactions. The collective coordinates of BOHM and PINES 
refer to the spin wave amplitudes which, as is well known, represent 
the collective excitations of the Heisenberg ferromagnet. However, there 
is an important difference. Whereas the number of degrees of freedom 
is not changed by the Bohm-Pines treatment, this number is enlarged 
enormously by the introduction of spin waves in the above treatment. 
Indeed, the spin wave operators are independent of the spin operators 
and the total Hilbert space is the Kronecker product of the spin space 
and the spin wave space. 

The operator of the total number of particles is defined by 

M = Z ('h + b~- bi) (22) 
i 

and is a constant of motion, as it commutes both with //1 and Hz.  
Therefore each subspace of the total Hilbert space, which is spanned 
by the statevectors I OM> belonging to the same number M, is invariant 
with respect to H2. If we apply the interaction terms in //2 on the 
vectors [0M>, we see that there is only the term 

- S Z Vij b + o'~- (23) 
zj 

which may give a nonzero result when it acts on the vectors with M =  1. 
All the other terms at least need M =  2 in order to give nonzero results, 
i.e. these terms describe ordinary two-particle interactions. 

We shall eliminate the term (23) which does not represent an ordinary 
interaction. This can be done by a further transformation according 

3 BOHM, D. ,  and  D.  PINES: Phys.  Rev.  92, 609 (1953). 



Spin Wave Problem in the Heisenberg Model 511 

to (15) with the nonsingular operator 

xb( cF 
Y 2 = e  ~ 

which commutes with M. Using the formulas (A.2) of the Appendix 
we obtain the following transformed Hamiltonian, H3=T 2 H2 TZ 1, 
which also commutes with M: 

H3 =Ho +A-  U. (24) 

The first term H o is the free spin wave part (20); the second term, A, 
contains only spin operators and replaces the Ising Hamiltonian (18), 

A = ~ Z "~-+ Z ~j n,( . , -  1) .j(,,~- I ) ,  (25) 
i U 

whereas the third part U describes the interaction between spins and 
spin waves, and is given by 

+ I b  +b 1 . + (  1 ,+ \ V+ o o)J  
L_ 

x [ b + b - l b + ( n + l b + a - ) ( b - r r - ) + 2 ( a + b + 2 @ n ( n _ l ) ) l  j_ (26, 

[{' } - b [  n + ~ n ( n - 1 ) + G + b + b + ( b + a  -) (b-a-)-  

The individual terms in this expression are ordered in such a way that 
all creation operators a + and b + stand to the left of the annihilation 
operators o-- and b; clearly we only need to order the operators which 
refer to the same lattice site i since the coupling V~j vanishes for i=j. 
Furthermore, in deducing (25) and (26) we have used the identity 

1 
n - a + a- =-2--~ n(n-  1) (27) 

which follows from relation (2). 

Though the total interaction U looks very complicated, it has the 
great advantage that the individual terms in (26) all describe ordinary 
interactions between two particles at least. We may classify the individual 
terms according to the minimal number Mn,~, of particles we need in 
order that U I ~M~,i~> gives a nonzero result. It is easy to see that in this 
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sense U splits up into three sets of terms: U(2), U(3), and U(4) which 
describe the scattering of two, three, and four particles, respectively. 
Furthermore, we see that the second part of A given by (25) describes 
a four-particle interaction between spins. 

Let us consider for a moment the operator A. In the case of spin 
�89 (S = �89 the second part vanishes because n can take only the eigenvalues 
0 and 1 ; A therefore reduces to the one-particle operator % ~ ni which 

may be denoted by A0. It is easy to show that A is positiv-semidefinite 
and the eigenvalues of A o are lower bounds of the corresponding eigen- 
values of A: Using n(n-1)<=4S 2, we obtain 

A>~.[~n,+vo(Sn~-�89189 (%=e+�89 (28) 
i i 

We shall need this useful property in the next section, where we study 
the low-temperature behaviour of the Heisenberg ferromagnet. 

IV. Low-Temperature Expansion of the Partition Function 

The Hami l ton ian / /3  will now be used to obtain a low-temperature 
expansion of the partition function Z ' = T r a c e  e -~n3. If we take the 
interaction part as perturbation, we can disentangle the unperturbed 
part, H o +A,  from the exponential and the partition function may be 
written as 

Z ' = T r a c e e  -p(n~ Texp dtflU(t) (29) 

where t is FEYNMAN'S 4 ordering parameter or, as one may say, a dimen- 
sionless imaginary time, and T denotes the usual time ordering symbol. 
In the interaction representation we have 

U (t) = e ~ p (no + A) U e- t  p (no + a). (30) 

Expanding (29) with respect to U, we obtain 

Z ' = T r a c e e  -p(n~ 1+  Idt, f dtv_l...SdtlBg(to...Bg(tl) (3~) 
v = l  0 0 0 

which is ordered by the succession of the integrations. 

Starting from this expression one could try to define an expansion 
in diagrams. But a diagrammatical expansion is not simple if one deals 
with spin operators, since one cannot apply WicK's theorem s generalized 
to thermodynamical averages 6. Instead of the usual treatment one has 

4 FEYNMAN R. P.: Phys. Rev. 84, 108 (1951). 
5 WICK, G.:  Phys. Rev. 80, 268 (1950). 
6 ]]LOCH, C., and C. DE DOMINICIS: Nuclear  Phys. 7, 459 (1958). 
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to consider a semiinvariant expansion, as was done for the Heisenberg 
Hamiltonian by STINCHCOtaB~ et al. 7. tn the following we need not define 
diagrams, but we emphasize the fact that the "linked-cluster-theorem" 
at once follows from a semiinvariant expansion, therefore the free energy, 
/3 F '=- log  Z', only contains contributions from connected diagrams 
which are proportional to the number of lattice sites Jg'. 

In this chapter we confine our attention to the temperature dependence 
of the individual terms in the expansion (31). Temperature-dependent 
factors may come from two sources. First, there are the fl-factors con- 
nected with each U-term in (31); these fl-factors are partially compen- 
sated by the time integrations as is shown below. Second, several ex- 
ponential factors will appear which result from the interaction represen- 
tation of the U-terms. 

As usually we shall neglect contributions to the partition function 
or the free energy, respectively, which decrease exponentially with tem- 
perature like e - ~  (x>0) .  Introducing the explicitly time-dependent 
U(t) given by (30) into the expansion (31), and taking into account 
that the unperturbed part, Ho+A , is positiv-semidefinite, we see at 
once that, after integration, the exponential temperature dependence of 
a special term in the expansion will be given by e -p~, where the number 
x is positive or zero (x>0).  Furthermore, if the same contribution is 
calculated with A 0 replacing A, we conclude from (28) that the correspond- 
ing number x0 satisfies the condition 

O<xo<x. (32) 

Therefore we may use A o instead of A in order to determine the tempera- 
ture dependence of a matrix element in the expansion (31), because the 
error can be only of the order e -p(x-xo). 

Now it is easy to calculate the right hand side of (30). The operators 
in U are transformed according to 

+ / e.} 
e_tB(Ho+Ao) = ~ p bp 

t,~l, ai- ~iee+P~ot . (33) 

17 i 

The first term in (31) gives, up to exponentially small contributions, 
the partition function of ideal spin waves: 

Zo = Trace e -p Uo = I-[ {1 - e -p "~}- 1. (34) 
b p 

7 SrrINCHCOMBr, R .B . ,  G.  HoRwrrz ,  F.  ENOLERT, and  R. Bgot r r :  Phys.  Rev.  130, 
155 (1963) 

z. Physik. Bd. 184 35 
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If we define the average value of an operator (9 by 

Trace e -p Ho 0 
((9} = Trace e -~ ~~ ' (35) 

the partition function Z "  * may be written as 

t t  oo 1 t2 

g - Z o  ~ ~dt~...~dh x 
go v=l o o / (36) 

oo 

x ~. ~ (~z (N) [  e-P~~ (/~ U(tO ...fl U(h)) I~,(N))  
N = O  l 

where the /-summation extends over all orthonormalized state-vectors 
[c&(N)} belonging to the same number of spins N = ~ n i * * .  The Bose 

i 

average may be performed using WICK'S theorem, and is given by the 
sum of all possible pair-contractions defined by*** 

I 1 1 e-p ~p('-''); (37) {T(bp(t)b}(t'))}=fpp, O(t-t')-~ e~p_l 

in particular, if the exponential factor e -p "~ ( ' -  r) vanishes by integrations 
and t ' >  t, relation (37) leads to the "particle" average 

( b ;  bp) = (e ~ " - 1)- 1. (38) 

Introducing the spin wave energy (21) with (Vo-V~)~y p2, we see that 
in zero magnetic field the average will decrease exponentially if the 
momentum p is not small as ~/-T, whereupon the p-summation will 
give a TLfactor.  

Let us now show that the time-integrations in (36) compensate the 
fl-factors connected with the U-terms. We consider the first integration 
over tl. The fi in front of U(tl) will not be compensated if the argument 
of the tl-dependent exponential function, due to the interaction re- 
presentation, vanishes identically. From WICK'S theorem we conclude 
that this may occur only if the corresponding b + and b are contracted 
pairwise, i.e. if we have the Bose average (U( t l ) ) .  Certainly this average 
will not vanish if U contains an equal number of b + and b. However, 
we see from (26) that the U-terms in question all have at least one b + 

�9 The double  pr ime refers to A o . 
�9 * The state-vectors [ ~0l(N)) span the total  spin Hilbert  space (~l(ot(N))(fot(N)] 

= i )  and may  be combined f rom the vectors Inl} belonging to each lattice site i. 

�9 ** There is no ambiguity concerning the O-function if the arguments  t and t' 
are equal because the b + always stands to the left of b in each U.term. Therefore the 
t ime argument  of b + is greater by an infinitesimal and the O-function vanishes. 
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in front; therefore we obtain at least one particle average (38) which 
gives a T~-factor compensating the r-factor. 

Suppose now that after # integrations the argument of the exponential 
function depending on t~+ t vanishes. According to WtcK's theorem 
we then have to consider the Bose average of some U, i.e. ( U . . .  U>. 
There might be no particle contraction (38) at all, but only "hole" 
contractions (b b+>, and therefore no compensating T~-factor. How- 
ever, this possibility will occur only if the U-term in front of the average 
is given by one of the first U-terms in (26): 

U1 =1~,  V~j(a+ b), a + b +-~- n(n- 1) (39) 
2 ~j j" 

Let us consider the contribution of the second term in more detail*. 
Combining in formula (36) the critical integration over t ,+l  with the 
preceding integration over t,,  we have, neglecting all parts we are not 
interested in, 

~+I 1 t~+2 eta+ 1 # (~~ S dt~ e-t"~(=O-~A r2 I dt~+l 

o [ o t 1 
= (Co - ep)- 2 et.+= ~ (.o-.,,) _ 1 + (c% - %) ( ~  e "§ r (.~ 

\ a ep /=o = ~. j 

where we have introduced the time-dependent factors of the operators 
o-~ (t~+l) and bi(t,+l) (33). The third term in (40) is the critical one. 
Performing now the other integrations in (36) with the exponential 
e t-§176 we may generate the critical contribution by applying the 

a 
operation -~cp "'" 1~o=~, on the final contribution of the first noncritical 

term in (40). The result of all integrations will be a sum of exponential 
factors with denominators of the form 

(a2 -t-~o--el,) (a 3 -t-ao--~p). . .  , (b 2 -t-50 - e p ) ( b  3 - t -~o-ep) . . .  �9 

Applying the above-mentioned operation on these terms, we shall 
obtain the critical r-factor only if the operation is applied to the ex- 
ponential factor e a("~+~~ Combining the final contributions of the 
critical and the noncritical term in (40), we have 

e~ (.~ +~o) [e-~ .. _ fl(ao_ %) e-~ .o]. 

The first term in brackets will give a T~-contribution if p is small as 
I /T ,  whereas the second critical contribution decreases exponentially 
and may be neglected. 

�9 The following discussion is similar for the contribution of the first term in (39). 

35* 
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Thus we obtain the result that the fl-factors of a special matrix 
element in (36) are compensated by the integrations or by Bose averages 
if in intermediate integrals the arguments of the time-dependent ex- 
ponentials vanish. As we are interested only in the lowest order contri- 
butions with respect to fl, we can neglect the last case as for the further 
l /T-dependence introduced by the Bose average <b + b>. There may be 
only one fl-factor if the argument of the exponential function in the last 

1 

integral, j" dt~ . . . ,  vanishes. 
0 

Let us now consider a special spin matrix element <opt(N) I ... [ ~0l(N)> 
in (36). As the spin operators are independent for different lattice sites, 
it is sufficient to consider the contribution of a single lattice point i: 

e-~  ~o, (n  i r (~+(t~)  ...~r+(t.) ~ - ( t l ) . . .~ - ( t ' , ) )  In)  (41) 

where we have omitted n-operators which have no influence on the 
temperature dependence. Furthermore we can assume that all the time 
arguments of the o -+ are larger than those of the o--; otherwise there 
would be some a - ( t ' ) ~ + ( t )  ( t ' > t )  which might be replaced by the 
number o--o -+ enlarging the corresponding exponential e -p~~ to 
unity. Introducing o --+ ( t )=G -+ e -+p~~ it is easy to see that (41) vanishes 
identically for # > n ,  exponentially for # < n ,  and that it gives a finite 
result only if # = n  and t~ . . . .  t~= 1, t~- '  . . . .  t ,=0. '  Therefore we conclude 
that a special matrix element (~o~(N) I ... I qh (N))  will give a finite result, 
only if we can find N o-+-operators * with larger time arguments than 
those of the corresponding o---operators; furthermore, only the upper 
(lower) limits of the integrations over the time arguments of the ~+ (o--) 
will contribute. 

As may be seen from (26), all U-terms which contain a o -+ just have 
one b-operator more than b+-operators. Therefore, the N a+-operators 
are always accompanied by a factor e-P(~q~+'"+"~ ) which comes from 
the time-dependent exponentials e -peqt connected with each bq. More- 
over, the integrations in (36) can give only an equal number v of e p~"- 
and e-P~'-factors.  Altogether we have the exponential factor 

e/? (ep l  + ' "  + E p v - e q ' l  . . . . .  C q ; - ~ q l  . . . . .  ~ .N)  (42) 

with independent momenta Pl . . .  qs**.  As all the bp+-operators ( p =  
Pl ... P,) stand in front of their contraction partners bn - otherwise it 
would not be possible to obtain e ~p from the corresponding time- 

�9 + . + etc. �9 In particular, if N=nilq-ni2q- "" ", we must have nix ~ ,  nz2 ~i2, 
t t 

�9 * Pair-contractions between some b + (p =pl...pv) and some bq (q = ql' . .  q~ ql... qN) 
will merely decrease the number v. 
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dependent factor e f lep( t - t ' )  by integration - ,  we have for P=Pl. . .  Pv 

e a~p (b~ bp) =(b~, bp+). 

Similarly the b~ (q=qt ... qN, q'l ... q'~) will give 

e-p,q(b~ + + b e )=(bq bq). 

As all "partMe"-contractions lead to a TLfactor, we obtain the result 
that a special matrix element in (36) with N reversed spins and F "par- 
ticle" contractions (b + b} at least must give the total temperature-factor 

T-~. (/~+ N)- 1. (43) 

It may be noticed that F >_ v because there may be several other contrac- 
tions (b + b} in the matrix element. 

The number (F+ N) is just the total number of independent particles 
which interact with one another; N refers to the number of reversed 
spins in the entrance channel, whereas F is the number of momenta 
independent spin wave "particles". 

V. Lowest-Order Contribution to the Partition Function 

Let us consider the different interaction terms U in (26). As the 
operators b and b + contained in the U-terms always refer to independent 
spin wave momenta, we see that a special U(Mmin) describes the inter- 
action of Mml n independent particles. Therefore, if a matrixelement in 
(36) contains a special term U(Mmin) , the total number (F+N) of 
independent particles cannot be smaller than Mmin, i.e. 

F + N >= Mmi n . (44) 

In order to obtain the lowest order contributions we can therefore 
neglect the terms U(3) and U(4) because these will lead to temperature- 
factors T 7/2 or Z 5, respectively, at least. Furthermore we may neglect 
the second part of the operator A (25) for the same reason. Thus, the 
lowest order contributions to the partition function may be calculated 
from the reduced Hamiltonian//3 (24), 

red + Ha = c ~ ( n i + b i  bi)- 
i 

- � 8 9  ViiIa~ a~. bibi+ b~ b~. bibj+2b~- a~. bibj+ (45) 

where we have retained only the two-particle interactions. 



518 J. ZITTARTZ : 

By further transformations with nonsingular operators T, according 
to (15), we shall now eliminate the underlined interaction terms in (45) 
which actually contribute to higher order. Using* 

we can eliminate the term 

1 + - 

T3 = e ~-  '~ b, ,, r (46) 

(47) -�89 Vijbi + n~aj- 
~ J  

by means of (A.3). Instead of this term we obtain a number of interaction 
terms which describe the scattering of more than two particles. According 
to the analysis of the last chapter we omit these terms in the Hamiltonian. 
In the same way we eliminate the term 

-�89 V~j b~- b + a; 2 (48) 
*J 

from the Hamiltonian by the transformation with 

1 + 2  - 2  

T4= e " , (49) 

neglecting all interactions between three and more particles. 

Now it is easy to see that we can neglect all other terms in (45) 
which contain at least one spin operator. These interaction terms do not 
contribute to the partition function, because the a+-operators cannot 
lead to diagonal matrixelements. Furthermore 

Trace e -~ ~ ~"~= 1 + O (e -p ~). (50) 

Thus in lowest order beyond the contribution of free spin waves, the 
partition function can be calculated from the resulting Hamiltonian 

HDy~on=Z~xb + bi-S~.. Vijb~- bj+�89 V~jb~- bf bj(bj-bi), (51) 
i ~d ~J 

which may be Fourier-transformed to 

HDyso . = ~ ca, b~ bp + ] 

~' 1 I (52) 
+ 2-~V- p p~ q, 6 (p + q - p' - q') (vp, - v e _p,) bp +, be +, bp b e . 

This is DVSON'S 2 Hamiltonian, where the second part is just the dynamical 
interaction between ideal spin waves. 

* The first part  of H~ ed will not  change since T 3 commutes  with 3//. 
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From the analysis of the last section we conclude that the lowest 
order contribution to the partition function should be given by the 
scattering of two spin waves with a temperature factor T 2. Actually, 
as may be seen from DYSON'S work, the final contribution is of the 
order T 4. This difference is due to the symmetry of the interaction 
potential. 

The author would like to thank Professor B. M(JHLSCHLEGEL for valuable discus- 
sions and helpful comments during the completion of this work. 

Appendix 
The following formulas may be checked by using the commutation rules (6) and 

(11) and differentiation with respect to )o; all the operators refer to the same lattice 
site j, which is omitted for simplicity: 

- z Z : ?  
7"1= e ~ b~:e-,Za+b 

b / 
b +  e,~ ~r + b 

o -+ 

b + - 2 a  + 

n + 2 a  + b 

o-- + 2  1 - b - - ~ -  a + b z 

if+ 

(A.1) 

T2 ,-~- e.~ ~ Li:l b + 
: e'~': b+'r -  e - 2 b +  a -  

b - 2 a -  

b + 

n + 2 b + a  - 

i f -  

+ n 2 2 
a + + 2 b  ( 1 - ~ - ) - - ~ -  b +z 0"- 

(A.2) 
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- [i:/ AZb~-nlai eAb+na_ 
T 3 = e  i 

b - 2 n a -  
b + 
n+2b+ na - 
a-  [1 +~ b + ~ - ] -  

a + + 2  b + (1  

/ 

\ 

e-Ab+ na- 

n+�89 ] b + 
s n [1+~ ~-] 

(a.3) 

,zZt,+2a~ -2 
T 4  ~___ e ,: 

b + 
: e 2b+2a-2 _ e - A b + a a - 2  

b_2~b+ a -2 
b + 
n+22b+2a -2 

! f f-  

a+W)~b+ZI2-1(2nW22b+Za-z+i)]a- 

(A.4) 


