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Abstract

In this paper we put the work of Professor N.G. de Bruijn on
quasicrystals in historical context. After briefly discussing what went
before, we shall review de Bruijn’s work together with recent
related theoretical and experimental developments. We conclude with
a discussion of Yang–Baxter integrable models on Penrose tilings, for
which essential use of de Bruijn’s work has been made.

1 Introduction

1.1 Dedication

This article is devoted to the memory of one of the great mathematicians
of the twentieth century, Prof. dr. N.G. de Bruijn. For this purpose, we
shall describe here the important and unique contributions of de Bruijn to
the development of the theory of quasicrystals together with their historical
context.

We shall review several theoretical developments related to de Bruijn’s
work. We shall also briefly discuss Shechtman’s experimental findings for
which he was awarded the 2011 Nobel Prize in Chemistry and mention some
recent technological applications that resulted from his discovery. Finally, we
shall discuss some of our own results, explaining explicitly how de Bruijn’s
work has been used, but without going into the full mathematical details.

1.2 Pentagrid and Cut-and-project

Two of de Bruijn’s papers [1, 2] give deep new insight into the nature of
Penrose tilings [3, 4, 5] introduced by Penrose in 1974 as a mathematical
curiosity and game. Penrose introduced two kinds of tiles, together with
local matching rules forcing a tiling with a five-fold rotational symmetry
axis.
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Rather than constructing the tiling using local matching rules for the tiles
that force aperiodicity, de Bruijn discovered two global construction methods
starting with a five-dimensional lattice. The first method, a cut-and-project
method, draws a two-dimensional plane and projects all lattice points in
the five-dimensional lattice to that plane, that are within a certain distance
from the plane as defined through a “window.” The other method introduces
a “pentagrid” of five sets (grids) of equidistant parallel lines, with lines of
different grids intersecting each other with angles of 36◦ and 72◦; the Penrose
rhombus tiling follows then by dualization, choosing each rhombus according
to the orientation of the two grid lines meeting at a vertex.

The pentagrid of de Bruijn is intimately related with the Conway worms
mentioned already in Gardner’s 1977 article [5]. It is less directly related
with the Ammann bars [6, 7]—special non-equidistant lines, which have the
advantage, however, that one can draw them on the Penrose tiling itself,
while they also define the tiling. Therefore, it was not immediately clear
to many physicists how great de Bruijn’s contribution is. His is a simpler,
complete, systematic and precise, mathematical description, allowing explicit
calculations. The findings of Conway and Ammann, as reported, e.g., by
[6, 7], were mostly left as observations with details not worked out. The
advantage of the approach of de Bruijn is particularly clear in our work
discussed in the final section 7.

Quasiperiodic structures had been studied by mathematicians and even
appeared decorating medieval Islamic buildings. But because of the two
constructions of de Bruijn we may feel justified to call the Penrose tiling a
quasicrystal.

1.3 Nobel Prize in Chemistry

In 1982, while at the U.S. National Bureau of Standards near Washington,
DC, Dan Shechtman observed a ten-fold scattering pattern from a metal
alloy sample, that looked like an ordinary crystal. As this was contradicting
long-held beliefs in the physics and chemistry communities, Shechtman was
opposed by many colleagues—and even ridiculed by some of them—since his
observations contradicted standard physics texts like Kittel’s [8]. Although
initially rejected by referees, Shechtman succeeded in publishing his findings
in 1984 [9, 10].

The early mathematical results on Penrose tilings and three-dimensional
structures as discussed by Steinhardt et al. [11, 12, 13] helped convince many
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of Shechtman’s colleagues, especially since Mackay had even calculated a
scattering pattern with ten-fold symmetry from a Penrose tiling [14, 15]. In
the end, few continued their opposition, with the most prominent one being
Nobel Prize winner Linus Pauling. More examples of quasicrystals were found
in the laboratory and quasicrystals found several technical applications. For
his pioneering work Shechtman received the 2011 Nobel Prize in Chemistry
[16] for the discovery of quasicrystals.

In his Nobel lecture [17] Shechtman compared himself with a little pussy-
cat trotting in front of a row of German shepherds, while quoting Psalm 23
in the original Hebrew and King James English, “Yea, though I walk through
the valley of the shadow of death, I will fear no evil.” He also quoted from
Kittel’s authoritative and widely-used textbook, “We cannot find a lattice
that goes into itself under other rotations, such as by 2π/5 radians or 2π/7
radians. . . . We can make a crystal from molecules which individually have a
five-fold rotation axis, but we should not expect the lattice to have a five-fold
rotation axis.” [8, p. 12]. These two passages in the Nobel lecture illustrate
how hard it was for Shechtman to get his findings accepted by his colleagues.
Finally, in the seventh edition of his textbook Kittel acknowledged the exis-
tence of quasicrystals [18, pp. 48, 49].

1.4 Applications of Quasicrystals

Quasicrystals exhibit very unusual properties and because of these they have
found many technological applications [19, 20]. The 2011 Nobel Commit-
tee for Chemistry wrote [21]: “When trying out different blends of metal,
a Swedish company managed to create steel with many surprisingly good
characteristics. Analyses of its atomic structure showed that it consists of
two different phases: hard steel quasicrystals embedded in a softer kind of
steel. The quasicrystals function as a kind of armor.” Quasicrystals are also
bad conductors of heat and electricity and have non-stick surfaces.

Therefore, the number of applications of quasicrystals is ever increasing.
Quasicrystals are now used in razor blades, thin needles made for eye surgery,
materials for reuse of waste heat, surface coatings for frying pans (causing
the pan to heat evenly), energy-saving light-emitting diodes (LEDs), heat
insulation in engines (especially diesel engines), see e.g. [19, 20].

It may be noted that quasiperiodicity also can be generated in optical
lattices [22], which may lead to a different kind of applications.
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2 Prehistory

2.1 Islamic Art

One of the earliest forerunners of quasiperiodic tilings is manifested in the
decoration of certain Islamic buildings [23, 24, 25]. Some examples are the Al-
hambra Palace, Spain, the Darb-i Imam Shrine, Isfahan, Iran, and a Madrasa,
in Bukhara, Uzbekistan. As the Muslim faith did not allow images of life
objects, artists and architects in Islamic countries were searching for a wider
variety of geometrical structures to decorate their important buildings.

2.2 Dürer’s Unterweysung der Messung

Albrecht Dürer (1471–1528) published a systematic study of tilings in his
“Unterweysung der Messung” (1525). He concluded that regular triangles,
squares and hexagons can fill the plane, but pentagons cannot by themselves
do that without rhombi to fill the holes, see [26, bk. 2, 4 figs. 24].

Similarly, twelve pentagons make a dodecahedron, twenty equilateral tri-
angles form an icosahedron (the dual of a dodecahedron). However, these
objects cannot be stacked without either leaving free space or allowing partial
overlaps.

2.3 Fibonacci sequences

Leonardo Fibonacci of Pisa (±1170 – ±1250) not only advocated the use
of Arabic notation of numbers over the Roman numerals, he also is the
originator of the Fibonacci sequence,

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . . , Fn+1 = Fn + Fn−1. (1)

This describes the exponential growth of a rabbit population: Every time
step each pair produces a new pair that needs one time interval to mature,
before having their own offspring.

It is well-known that the Fibonacci numbers Fn can be expressed in terms
of the golden ratio, which is commonly denoted by either τ or φ. Explicitly,

Fn =
τn − (1− τ)n

τ − (1− τ)
, lim

n→∞

Fn+1

Fn
= τ, (2)
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where

τ =
1 +
√

5

2
= 1.61803 · · · , 1− τ = −1

τ
=

1−
√

5

2
= −0.61803 · · · . (3)

These are the solutions of x2 = x+ 1.
Much more recent is the geometric Fibonacci sequence: Assume A is a

red line piece of length 1 and B a blue line piece of length τ . We can then
concatenate them (link them together) using the rule,

F1 = A, F2 = B, F3 = BA, F4 = BAB, F5 = BABBA, (4)

F6 = BABBABAB . . . , Fn+1 = FnFn−1. (5)

The resulting F∞ is quasiperiodic, i.e. a one-dimensional quasicrystal. A
generalization of this sequence has been studied also by de Bruijn [27, 28].

2.4 Kronecker’s Theorem

Kronecker formulated a well-known theorem that implies quasiperiodic se-
quences, known as Kronecker’s Approximation Theorem [29]: If x is an ir-
rational number, then the infinite sequence {x}, {2x}, {3x}, . . ., is uniformly
and densely distributed within the unit interval. Here {nx} ≡ nx− bnxc is
the fractional part of nx, i.e. 0 ≤ {nx} < 1. Also, the formulation of the
theorem given here is a more or less obvious extension of the original [29].

2.5 Harald Bohr—Almost periodic functions

Harald Bohr was a star of the Danish national soccer team, that won the silver
medal in the 1908 Olympics beating France by 17-1 (the all-time Olympic
record). During Bohr’s 1910 PhD defense the room was filled with soccer
fans. How unusual!

In his work on almost periodic functions, Bohr gave several constructions
of functions that are not periodic, but almost repeat, i.e. |f(t+T )−f(t)| < ε,
for some T (ε) for given arbitrarily small ε [30]. This is a highly nontrivial
generalization of Kronecker’s sequence.
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Figure 1: Fraunhofer diffraction pattern from five pinholes arranged as a
pentagon. The darker the spot, the higher the intensity. Note that the
center area is almost repeated at ten places near the border.

2.6 Optical example—Fraunhofer diffraction pattern

One can make the following variation of Young’s double slit experiment:
Illuminate five pinholes arranged as a pentagon in a screen and observe the
diffraction pattern on a far-away screen. Then the local intensity on that
screen is given by I = I0|A|2, with

A(x, y) =
5∑
j=1

eix cos(
2π
5 j)+iy sin( 2π5 j) (6)

an almost-periodic analytic function of x and y.
It is very easy to plot the intensity pattern using Maple, for example:

f:=(x,y)->-log(abs(sum(exp(I*(x*cos(2*Pi*j/5)

+y*sin(2*Pi*j/5))),j=0..4))^2);

with(plots): d:=50; g:=400:

densityplot(f(x,y),x=-d..d,y=-d..d,grid=[g,g],

style=PATCHNOGRID,axes=NONE,scaling=CONSTRAINED);
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The resulting pattern, see figure 1, has ten-fold rotational symmetry and
thus cannot be periodic.

3 Penrose Tilings

Sir Roger Penrose, born in 1931, is a British mathematician with major con-
tributions to general relativity and cosmology. He introduced Twistor The-
ory, mapping (3+1)-dimensional space-time and objects therein to a space
with 2-2 signature. He also contributed to the theories of Black Holes and the
Big Bang. He made some unusual observations. For example, he calculated
the entropy of the universe at the Big Bang and found it to be extremely
small, estimating the “Creator’s aim” to be 1 in 1010123 [31, p. 344].

Penrose discovered his tilings in the early 1970s and patented them as they
could be used for interesting puzzles and games. He published his invention
in 1974 [3, 4] and few people knew about them before the 1977 paper of
Martin Gardner [5, 6].

From the pentagon you can make two prototiles in different ways, one
way being a skinny rhombus (36◦-144◦) and a fat rhombus (72◦-108◦). Next
Penrose introduced matching rules to force the tiles into a quasiperiodic
tiling: The markings on neighboring tiles have to exactly match. One can
use different arrows on the edges, or colored arcs in the bodies, or matching
edge deformations (to make the jigsaw effect). One can find similar matching
rules for other pairs of prototiles also, like Penrose Kites and Darts [3, 4].
The result is an aperiodic tiling with the center being a five-fold rotation
axis.

A well-known related tiling is the Ammann–Beenker tiling using squares
and 45◦-135◦ rhombi. In this case the center is an eight-fold rotation axis.

It is OK to stand on a Penrose tiling like the one at Texas A & M, but
when Kleenex sold toilet paper with a Penrose tiling design on it, Penrose
sued the company saying that his patent was violated.

4 Nicolaas Govert de Bruijn (1918-2012)

N.G. de Bruijn started his work on quasicrystals with the one-dimensional
case [27, 28] studying so-called Beatty sequences,

b(n+ 1)θ + γc − bnθ + γc, d(n+ 1)θ + γe − dnθ + γe, (n ∈ Z), (7)
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with θ and γ some constants. These sequences are in direct correspondence
with generalizations of the Fibonacci lattice and also play a role in higher-
dimensional tilings of Penrose type. They are differences of two sequences of
the type discussed in the subsection on Kronecker’s theorem.

Next, de Bruijn went to the two-dimensional Penrose case introducing the
pentagrid method [1, 2], which he later generalized to the multigrid method
[32]. The multigrid or n-grid is a collection of n sets of equidistant parallel
lines, with lines of different sets making angles that are multiples of π/n. The
tiling then is a dualization of the multigrid, assigning to each intersection of
lines a rhombus with all sides perpendicular to one of the intersecting lines.
The sides of all rhombi are of equal length.

More generally, de Bruijn constructed also higher-dimensional versions
building quasicrystals of parallellotopes [32], thus completing the proof that
the dual of a multigrid is a tiling.

It should be noted that Gardner, in his 1977 Scientific American article
[5], had already discussed the “Conway worms” discovered by Conway. In the
rhombus version of the Penrose tiling, a Conway worm is a band that passes
through opposite sides of a sequence of rhombi of the tiling. There are five
sets of nonintersecting worms that correspond one-to-one to the pentagrid of
de Bruijn.

We should also note Ammann’s observation that the worms could be
replaced by a quasigrid of five sets of parallel lines that are not equidistant,
but their interdistances rather form a Fibonacci pattern. This is now called
the Ammann quasigrid made up of five grids of Ammann bars [6, 7]. The
connection with the pentagrid of de Bruijn was explicitly worked out and
proved by de Bruijn himself in [33]. However, the topological deformations
needed for the proof are such that one would not want to treat the two
five-grid pictures as interchangeable in actual more-involved calculations on
Penrose tilings like the one discussed in section 7.

The Fourier transforms of the tilings were treated by de Bruijn in [34, 35],
with earlier results for the regular Penrose tiling worked out numerically by
Mackay [14, 15]. For the infinite tiling this is an infinite sum of Dirac delta
functions, corresponding to what physicists call the Bragg diffraction peaks.

In [36] de Bruijn made the observation that for a given infinite Penrose
tiling one can find for any number ε > 0 two vertices so that all other infinite
Penrose tilings with the same two vertices have all but a fraction ε of their
vertices in common with the original tiling.

In [37] de Bruijn made a study of the inflation-deflation rules of the
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Penrose tilings providing details left out by Gardner [5].
In several of the aforementioned papers de Bruijn also addressed the Cut-

and-Project Method. The simplest example is the one-dimensional Fibonacci
lattice seen above. It derives from the two-dimensional square lattice by
cutting a narrow band out of the lattice and projecting all lattice points
within the band. More precisely, choose a direction with slope given by
the golden ratio and choose a properly sized window perpendicular to that
direction. Then project all lattice points within the window to the sloped
line. This generalizes to n and m dimensions (5 and 3 for Penrose tilings).

5 Paul Steinhardt “to the rescue”

While Shechtman was fighting referees and particularly Linus Pauling, he got
a big boost from the work of Steinhardt and coworkers.

Paul Steinhardt is a cosmologist, originally at the University of Penn-
sylvania, but now at Princeton. He wrote many papers on such topics as
Inflationary Cosmology and Cyclic Cosmology.

Up to 1984 quasiperiodic tilings was mainly a topic for mathematicians.
Together with Levine, Socolar and others he introduced the works of Penrose,
de Bruijn, Mackay, and later Gummelt, to the physics community, while
extending these works in various directions [38, 39, 40].

Many quasicrystals have been synthesized. The obvious question was,
“Do quasicrystals occur in nature?” This has been answered in the affirmative
as a first natural quasicrystal has been discovered in a museum in Florence,
Italy. It came from the Khatyrka River in Kamchatka, Russia [41, 42, 43].

6 Alternative approaches

6.1 Periodic approximants

Tsunetsugu et al. designed a modification of the multigrid approach of de
Bruijn that produces a converging sequence of periodic approximants to the
Penrose tiling [44, Appendix]. This could be extremely useful for numerical
calculations on the Penrose tiling, as one can often produce very accurate
numerical results for a number of approximants that may then extrapolate
very well.
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6.2 Inflation rules

One favorite way to create large tilings is by the repeated application of
certain inflation rules [45]: Blow up all tiles and substitute each of them
by a collection of the original tiles following very precise rules. The Tilings
Encyclopedia [46] gives more than 180 examples.

6.3 Overlapping unit cells

Petra Gummelt designed a special decagon decorated with red and blue
patches in a particular way [47] that can partially overlap with a copy in a few
ways. Two neighboring decagons must overlap red-on-red and blue-on-blue.
There are two types of possibilities A or B. The result is a representation
of a Penrose tiling in a way that may explain how they arise from chemical
interactions. “Gummelt’s Decagon as Overlapping (Quasi) Unit Cell” has,
therefore, caused much interest.

Further aspects of the decagon approach were discussed in [48, 49]. This
is followed by a number of studies that discuss clusters of different types
of atoms and the related chemistry filling the decagon in with atoms, thus
explaining how it comes about [50, 51, 52, 53]. Even comparisons with exper-
iments are made in some of these papers [50, 54]. Other papers discuss the
partial relaxation of the matching rules implied by the Gummelt decagon, so
that one can construct random tilings [55, 56, 57].

Overlapping three-dimensional versions have been constructed since, see
[58, 59] for a decagonal example. Using de Bruijn’s five-dimensional lattice
projected down to three dimensions, rather than two for the Penrose tiling,
we constructed a quasicrystal, periodic in one direction and quasiperiodic
in the other two. It is made up of overlapping polytopes with 22 external
vertices and 4 internal ones. But the polytopes in that model do not yet
have a Gummelt-type decoration enforcing matching rules.

The 1985 paper of Shechtman and Blech [10] used non-overlapping icosa-
hedra. This gave a description of the structure, but no complete understand-
ing how it could come about.
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7 Pentagrid Ising Model and Other Integrable

Models

7.1 Planar Ising model

One area of physics, for which the de Bruijn pentagrid construction has been
applied, is integrable models of statistical mechanics on quasicrystals. As
an example we shall discuss those aspects of our work on the (zero-field)
pentagrid Ising model [60] that relate to de Bruijn’s work. Ising models on
Penrose tilings belong to the class of planar Ising models. It is well-known
that such Ising models in zero magnetic field can be solved in principle using
Pfaffians or fermion methods [61, 62], though in practice it can become very
cumbersome. We shall see that the pentagrid allows introducing an extra
integrability structure facilitating detailed calculations.

A planar Ising model is defined on a planar graph, with spin variables
σj = ±1 on each vertex j and interaction energy −Jj,j′σjσj′ associated with
each edge 〈j, j′〉. In addition, each spin σj interacts with the magnetic field,
B in suitable units, so that the total interaction energy becomes

H = −
∑
〈j,j′〉

Jj,j′σjσj′ −B
∑
j

σj, (8)

with the first sum over all edges 〈j, j′〉 of the graph and the second sum over
all N vertices (sites) j.

In equilibrium statistical mechanics one introduces the Boltzmann-Gibbs
probability distribution

ρ({σ}) =
e−βH

Z
, Z =

∑
{σ}

e−βH, β =
1

kBT
, (9)

where {σ} stands for all N values σj = ±1, (j = 1 . . .N ), Z denotes the
partition function (Zustandssumme in German) providing the normalization
of ρ, while T is the absolute temperature and kB Boltzmann’s constant.

Some physical quantities of particular interest are the free energy per site

f = − 1

βN
ln
∑
{σ}

exp
(
β
∑
〈j,j′〉

Jj,j′σjσj′
)

= − 1

βN
lnZ (10)
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and the pair correlation of spins on sites k and l,

〈σkσl〉 =

∑
{σ}

σkσl exp
(
β
∑
〈j,j′〉

Jj,j′σjσj′
)

∑
{σ}

exp
(
β
∑
〈j,j′〉

Jj,j′σjσj′
) =

∑
{σ}

ρ({σ})σkσl, (11)

both in zero magnetic field, B = 0. In most physical applications one is
interested in very large systems (N ∼ 1023), so that one may just as well
consider the thermodynamic limit N → ∞. For the quasiperiodic case of a
ferromagnetic (Jj,j′ > 0) Ising model on a Penrose tiling, the bulk properties
are uniquely determined in this limit, irrespective of what happens at the
boundaries. Another physical quantity is the single spin correlation 〈σr〉
being evaluated in infinitesimal positive magnetic field (if all Jj,j′ ≥ 0), i.e.

〈σk〉 = lim
B↓0

lim
N→∞

∑
{σ}

σk exp
(
β
∑
〈j,j′〉

Jj,j′σjσj′ + βB
∑
j

σj

)
∑
{σ}

exp
(
β
∑
〈j,j′〉

Jj,j′σjσj′ + βB
∑
j

σj

) . (12)

This is positive (nonzero) for temperatures below the critical temperature,
T < Tc. The order of limits is important [64], as in the other order we have
B = 0 for finite N , in which case the symmetry σj → −σj for all j negates
〈σk〉 implying 〈σk〉 ≡ 0.

7.2 Star-triangle (Yang–Baxter) equation

For a subclass of Ising models more can be solved using an underlying Yang–
Baxter equation [63], which becomes a star-triangle relation in this case,
namely, ∑

σ4=±1

exp
(
K̄(u, v)σ1σ4 +K(u,w)σ2σ4 + K̄(v, w)σ3σ4

)
= R(u, v, w) exp

(
K(v, w)σ1σ2 + K̄(u,w)σ1σ3 +K(u, v)σ2σ3

)
, (13)

with Kj,j′ ≡ βJj,j′ = K(u, v) or K̄(u, v), depending on the orientation of the
edge 〈j, j′〉 with respect to two oriented lines crossing the edge, while these

12



Figure 2: The star-triangle (Yang–Baxter) equation for the Ising model rep-
resented as a picture. Solid circles represent Ising spins coupled by fat lines.
Open circles represent spin sites of the dual Ising model. The thin oriented
lines carry the rapidity variables. The bottom picture shows the two assign-
ments of βJ by either function K(u, v) or K̄(u, v).
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lines carry “rapidity” variables u and v, see also figure 2. Also, R(u, v, w) is
a factor independent of the values of σ1, σ2 and σ3.

Equation (13), illustrated by figure 2, expresses the fact that for an
Ising model so parametrized the partition function Z does not change, if
any given rapidity line passes through the intersection of two other rapidity
lines. Therefore, such models are called Z-invariant by Baxter [65]. Many
other solutions of Yang–Baxter equations exist that are not Ising-like. For
example, Baxter treats the Z-invariant eight-vertex model in the same paper
[65], a model for which the Yang–Baxter equation is still pictured by figure 2,
provided one couples each pair of spins connected by a fat line with the two
dual spins on both sides of that line. See, e.g., [63] for various appearances
of the Yang–Baxter equation.

Figure 3: Part of a regular Penrose tiling of fat and skinny rhombi. The
graph is bipartite, so that the vertices can be colored alternatingly black and
white, dividing the tiling into two (quasi-)sublattices.

Korepin [66, 67, 68, 69] pioneered the eight-vertex model on a Penrose
tiling. Now the rapidity variables, the free parameters in the Yang–Baxter
equation, live on the grid lines of de Bruijn’s pentagrid. The model has four-
spin interactions for each quadruple of vertices belonging to a rhombus of
the tiling, see figure 3. This allowed Korepin to calculate the free energy per
site of the model on an infinite Penrose tiling following Baxter [65, 70] and
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also to apply Baxter’s “unwieldy” multiple integral formula [65] for the pair
correlation in the special case that there is only two-spin interactions across
all diagonals of the rhombi. This special case factorizes into two independent
pentagrid Ising models.

7.3 The pentagrid Ising model

If we divide the vertices of a Penrose rhombus tiling into two sublattices as
shown in figure 3, we can put an Ising model on one sublattice with Ising
interactions along the diagonals of the rhombi. The other sublattice is the
dual lattice of the first one, on which one can put an Ising model at the dual
temperature. We have called this model, shown in figure 4, the pentagrid
Ising model [60]. This last paper consists of three parts, namely,

Figure 4: On the left: The pentagrid Ising model with spins on the black
lattice, interacting along diagonals of the rhombi. On the right: The dual
pentagrid Ising model built similarly with spins on the white lattice.

• an algebraic recursion scheme to systematically calculate results of pair
correlations as functions of the rapidities on pentagrid lines “passing
between” the pairs of spins, without doing Baxter’s integrals over an
ever-increasing number of variables,

• a new method to determine the joint probability of two distant local
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environments in the pentagrid, to connect those pair correlations with
actual positions of spins,

• the explicit numerical calculation of the Fourier transform (q-dependent
susceptibility or structure function) of the pentagrid-Ising-model pair
correlation.

We shall next briefly describe these three items, as they relate to de Bruijn’s
pentagrid construction, without going into the full details of [60].

In order to define the integrable pentagrid Ising model we start with a
regular pentagrid à la de Bruijn [1, 2]—five grids of equidistant parallel lines
making angles of multiples of π/5 with one another and shifted such that no
three lines meet in a common intersection, see figure 5. These lines, carrying
the rapidity variables, correspond to curved lines in the Penrose tiling, with
each line passing through opposite sides of a sequence of rhombi in figure 3,
thus identifying a grid line of the pentagrid with a “Conway worm” [5]—band
of rhombi with each rhombus connected to two other ones at opposite edges.

Figure 5: On the left: Part of the pentagrid. No three lines pass through a
common point, even though pairs of intersections may approach arbitrarily
close. On the right: The central “parallelogram” from lines of two grids with
one of 24 topologically different configurations of lines from the other three
grids inside. Note that multiple intersections indeed do not take place.

Grid lines can only intersect with angles of π/5 or 2π/5. Following de
Bruijn [1, 2], to each such intersection we assign a skinny or fat rhombus,
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respectively with their sides perpendicular to the grid lines, as is shown in
figure 6.

Figure 6: The four different ways to assign a rhombus to a given intersec-
tion of the pentagrid, with four different-size diagonals connecting the black
vertices.

7.4 Choice of Ising interactions

We want to choose the parameters of the interactions such that the star-
triangle equations hold, that the model has a five-fold symmetry axis, and
that the interactions are weaker if the separation of spins is larger.

The star-triangle equation imposes a parametrization in terms of elliptic
functions of modulus 0 6 k 6 1, k′ =

√
1− k2. This k relates to the

temperature, with k = 1 being the critical case. For the two choices for
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βJ = K(u, v) or K̄(u, v) in figure 2 we must choose, in the low-temperature
case with k 6 1 a temperature-like variable,

sinh (2K(u, v)) = sc(u− v, k′) = k−1cs(K(k′)− u+ v, k′), (14)

sinh (2K̄(u, v)) = k−1cs(u− v, k′) = sc(K(k′)− u+ v, k′), (15)

with K(k′) the complete elliptic integral of the first kind of modulus k′ and
sc = sn/cn and cs = 1/sc Jacobi elliptic functions. In the high-temperature
case, with k−1 > 1 temperature-like, we choose

sinh (2K(u, v)) = k sc(u− v, k′) = cs(K(k′)− u+ v, k′), (16)

sinh (2K̄(u, v)) = cs(u− v, k′) = k sc(K(k′)− u+ v, k′). (17)

Next we must choose the rapidities, such that the model’s interaction
strengths are rotational invariant, only depending on the separations of spins.
This is easily achieved noting that (14) through (17) only depend on k and
the difference of rapidities u− v. Each of the five grids of the pentagrid can
be oriented in two directions. Let for the jth oriented grid, gridj, the arrow
of each grid line point in the direction defined by angle

φj = ∠ gridj = φ0 − jπ/5, and let uj = jK(k′)/5, (18)

with j defined modulo 10. It is clear that then gridj±5 is the same grid as
gridj, but with the arrows reversed, and uj±5 = uj ± K(k′). This condition
for the change of rapidity with arrow reversion originates from [71, page 50].

The four pictures in figure 6 represent βJ = K(uj+l, uj), for l = 1, . . . , 4,
see also figure 2. Inverting the arrow of the uj-rapidity, replacing uj by uj+5,
we obtain βJ = K̄(uj+5, uj+l), which is the same, as can be seen comparing
(14) and (15), or (16) and (17), for the below or above critical temperature
cases. We conclude that sinh(2βJ) = sc(lK(k′), k′), or k sc(lK(k′), k′) for
l = 1, . . . , 4, the extra factor k being needed above the critical temperature.
Indeed, the longer the diagonal the weaker the interaction. We note that
Choy [72] made essentially the same choice of Ising interactions, specializing
the Penrose eight-vertex model and the free energy results of Korepin [66, 67],
but he did not derive new results for correlation functions.

7.5 Pair correlations in terms of rapidities

The traditional way to calculate pair correlation function (11) in infinite
planar Ising models is using either fermion (Clifford algebra) methods or
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equivalent dimer problems [61, 62]. If the spin pair lies on an axis of re-
flection symmetry, this leads to Toeplitz determinants, but in general the
computation can become quite cumbersome.

In many cases, the work can be greatly reduced with the help of quadratic
identities for the pair correlations [73], enabling one to exactly calculate all
pair correlation functions one-by-one recursively. These identities can be
seen as a general Wick theorem for fermions or as a compound Pfaffian
theorem [74]. Further simplification occurs if the model has an underlying
Z-invariance [65, 71]. Since the pentagrid Ising model is defined through
rapidities on the pentagrid, this applies [60] also for this case.

Let us explain this in more detail. Consider a pair of spins in the bulk
of a very large but finite Z-invariant Ising model. All edges of the model
correspond to intersections of pairs of rapidity lines. Bend, if necessary, the
rapidity lines such that there are no further intersections as they go off to
infinity. Then the edges of the Ising model are in one-to-one correspondence
with the intersections of the rapidity lines. We can now play Baxter’s game
of moving rapidity lines to or from infinity, making changes on the boundary
of the Ising model that cause perimeter-to-area effects in the free energy per
site that vanish in the infinite system limit.1

We can bend a rapidity line that goes through the bulk of the model, but
does not pass between the pair of spins considered, such that it now intersects
outside the model boundary with a sequence of other rapidity lines. Then,
applying the star-triangle equation of figure 2 several times, we can move that
rapidity line to the boundary. Similarly, we can introduce a new rapidity line
at the boundary and move it to go near the spin pair considered. However,
we cannot move rapidity lines that cross between spins in and out from there;
we can only change their ordering.

Consequently, the pair correlation cannot depend on rapidity variables of
rapidity lines that do not cross between the spin pair. It does depend on the
elliptic modulus and the set of rapidity variables on the even number, say
2n, of lines that do cross between the spins. With Baxter [65] we can now
introduce universal functions g2n({u1, . . . , u2n}, k), for n = 0, 1, 2, . . ., and
similarly g∗2n for the dual Ising model (with spins on the open circles rather

1The pair correlation has high- and low-temperature expansions that are uniformly
convergent within radii of convergence (expected to correspond to modulus k = 1), with
more and more coefficients taking their limiting values as the boundary moves away from
the two spins with increasing system size.
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than the solid circles in figures 3 and 4). More explicitly,

〈σiσj〉 = g2n({u1, . . . , u2n}, k), or g(u1, . . . , u2n) for short, (19)

where u1, . . . , u2n is any ordering of the rapidities of the rapidity lines passing
between sites i and j in the same direction. As said below (18), changing
the direction of rapidity line k results in the replacement uk → uk ± K(k′).
Obviously, g0 ≡ g∗0 ≡ 1, as σ 2

i = (±1)2 = 1.
With the notation of (19) the quadratic identities of [73] become

sc(u2−u1, k′)sc(u4−u3, k′)
×{g(u1, u2, u3, u4, · · ·)g(· · ·)−g(u1, u2, · · ·)g(u3, u4, · · ·)}

+{g∗(u1, u3, · · ·)g∗(u2, u4, · · ·)−g∗(u1, u4, · · ·)g∗(u2, u3, · · ·)} = 0,

k2sc(u2−u1, k′)sc(u4−u3, k′)
×{g∗(u1, u2, u3, u4, · · ·)g∗(· · ·)−g∗(u1, u2, · · ·)g∗(u3, u4, · · ·)}

+{g(u1, u3, · · ·)g(u2, u4, · · ·)−g(u1, u4, · · ·)g(u2, u3, · · ·)} = 0, (20)

where all “· · ·” stand for the same (but arbitrary) even set of uj’s, see [75, 76].
From these one can systematically derive all g2n and g∗2n iteratively with
increasing n, provided one knows these for the two cases with all or all but
one of the uj’s equal. For the pentagrid Ising model paper [60], these special
cases were evaluated by iteration from determinant formulae in [75]. Now
there is a more efficient way, discovered by Witte [77] and described in detail
in [78, section 3].

Finally, the single-spin correlation (12) cannot depend on any rapidity
variable. Therefore [65, 70],

〈σi〉 ≡ k′
1/4

for all sites i, (21)

below criticality, and zero above. Because of this property, it is also called
order parameter or spontaneous magnetization per site.

7.6 Integer quintuples, indices, and probabilities

So far we have not used the more technical part of de Bruijn’s work on
Penrose tilings. If one only wants to know the free energy per site of the
pentagrid Ising model in the thermodynamic limit, one just needs the idea
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of the pentagrid construction and the ratio of the numbers of fat and skinny
rhombi in an infinite Penrose tiling. Everything else needed is supplied by
Baxter [65]. The order parameter (21) is even a freebie in Baxter’s approach.

However, once we want to know more about the magnetic structure of
the model as is contained in the pair correlation, we need to know the precise
position of spins in relation to the pentagrid. We also need a prescription to
determine if a spin is in the black (even) or in the white (odd) sublattice of
figure 3. Finally, we need the joint probability of the occurrence of two local
configurations that are an arbitrary distance apart. For all these we need
many technical details of [1, 2, 27], as is explained more fully in [60]. Here
we shall outline the ideas, especially the use of sections 4 and 5 of [1].

First of all, de Bruijn introduces the five grids Gj, with the lines of the
jth grid labeled by integers kj, i.e.,

Gj = {z ∈ C|Re(zζ−j) + γj = kj, kj ∈ Z}, j = 0, · · · , 4. (22)

where

ζ = e2iπ/5, ζ + ζ−1 = 2 cos(2π/5) = τ−1 = 1
2
(
√

5− 1), (23)

in which τ is the golden ratio and the γj are five real numbers satisfying∑4
j=0 γj = 0. Grid Gj corresponds to grid2j with φ0 = 0 in (18). One can

easily choose the γj such that the pentagrid is regular, nowhere three or more
grid lines having a common intersection.

The vertices of the Penrose tiling correspond to the meshes, or faces, of
the pentagrid. These meshes are determined by a quintuple of integers, the
integer vector ~K(z) = (K0(z), · · · , K4(z))—defined the same for each point
z ∈ C of the mesh—using

Kj(z) = dRe(zζ−j) + γje, (24)

with dxe denoting the ceil or roof of x, i.e. the smallest integer > x. It is easily
seen from (22) and (24) that whenever z moves across a line of the jth grid,
Kj(z) changes by 1 and that the meshes are in one-to-one correspondence
with these integer vectors.

A particular useful property discovered by de Bruijn [1] and exploited in
[60] is that the sum of the five integers satisfies

Index(z) ≡
4∑
j=0

Kj(z) = 1, 2, 3, or 4, (25)
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by which we can distinguish if the corresponding vertex of the Penrose tiling,

f(z) =
4∑
j=0

Kj(z)ζj, (26)

belongs to the even (Index = 2, 4) or the odd (Index = 1, 3) sublattice of
figure 3, i.e., if it belongs to the Ising or the dual Ising model in figure 4.

One way to systematically account for all vertices of the infinite Penrose
tiling is to divide the pentagrid space into parallelograms by grids G0 and
G1. Let P (k0, k1) be the parallelogram bounded by lines k0− 1 and k0 of G0

and k1−1 and k1 of G1, defined in (22). The lines of the other three grids can
pass through P (k0, k1) in 24 topologically distinct configurations, with one
example shown in figure 5 and all 24 cases in [60, fig. 6]. It is easily verified
that this way P (k0, k1) is split into 6 to 12 meshes (or faces) depending on
the configuration.

It is convenient to single out one mesh of P (k0, k1) that corresponds to
a vertex of the even sublattice of the Penrose tiling. For this purpose we
introduced the reference integer vector (k0, · · · , k4), which is related to the
extreme corner zc of P (k0, k1) where the lines labeled by k0 and k1 cross.
Thus we chose

k0 = K0(zc), k1 = K1(zc),

k2 = dαe − k0 = K2(zc), k4 = dβe − k1 = K3(zc), (27)

with dxe the roof or ceiling of x and

α ≡ τ−1(k1 − γ1) + γ0 + γ2, β ≡ τ−1(k0 − γ0) + γ1 + γ4, (28)

which can be easily derived. However, for the last component of the reference
integer vector we chose

k3 = 2− dαe − dβe = −bαc − bβc 6≡ K3(zc) = d−α− βe, (29)

with bxc denoting the “floor of x”, i.e. the largest integer 6 x. The index of
the reference integer vector is

∑
j kj = 2, so that (k0, · · · , k4) indeed labels a

mesh corresponding to the even sublattice. On the other hand,

K3(zc) =

{
k3 − 1 for {α}+ {β} > 1,
k3 for {α}+ {β} < 1,

(30)

22



using the notation {x} ≡ x− bxc for the fractional part of x.
This shows that only for {α}+{β} < 1 the mesh adjacent to the extreme

corner zc belongs to the even sublattice, its integer vector ~K(zc) being the
reference integer vector of P (k0, k1). This is not so if {α}+{β} > 1, in which

case ~K(zc) corresponds to an odd vertex. That in one of the 24 configurations
the reference integer vector lies outside P (k0, k1) is not a problem, as now
{α}+ {β} ≷ 1 determines the nature (odd/even) of the mess adjacent to zc
and the corresponding vertex of the Penrose tiling.

The introduction of the variables α and β in (28) is one of the main tricks
in [60]. The values of {α} and {β} determine in which of the 24 configurations
P (k0, k1) is. It is straightforward to denote in the unit square of plotting {α}
versus {β} the area corresponding to each configuration. It is also clear from
(28) and Kronecker’s theorem of subsection 2.4, that the points ({α}, {β})
are uniformly and densely distributed as k0 and k1 run through all integers.
The probability of a configuration becomes simply the magnitude of an area
in the unit square!

For the determination to a pair correlation with spins having positions
corresponding to meshes in P (k0, k1) and P (k0 + ∆k0, k1 + ∆k1), we can
determine the shift (∆α,∆β) from (28). It is easy to find the joint probability
of having given configurations of the two parallelograms, as k0 and k1 run
through all integers, but with ∆k0 and ∆k1 kept fixed. It is now expressed
through the areas of overlap of areas in the above unit square and another
square where the areas are shifted cyclically by (∆α,∆β). This gives 24×24
probabilities.

However, for the regular Penrose tiling we do not have to consider all
576 = 242 possibilities separately, as we can combine many cases together.
The way [60] is set up, for the odd quasi-lattice we end up with 82 possibilities
and for the even quasi-lattice 162. We could even prove that the χ(q), defined
in the next subsection, is the same for both quasi-lattices. This reduction
does not occur for nonregular Penrose tilings [59], even though we may expect
these to lead to the same values of χ(q).

7.7 Wavevector-dependent susceptibility

A quantity of particular interest in physics is the wavevector-dependent sus-
ceptibility χ(qx, qy), which is the Fourier transform of the connected pair
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correlation. More precisely,

χ(q) = β lim
L→∞

1

L
∑
r

∑
r′

eiq·(r
′−r)[〈σrσr′〉 − 〈σr〉〈σr′〉], (31)

where q = (qx, qy) while r and r′ are the physical positions of the vertices on
which the spin variables live. The sums are done over all spin positions in
finite patches L of the Penrose tiling and the limit is taken in which the patch
becomes the entire infinite tiling. “Connected” means that we subtract the
contribution of spontaneous ordering, causing Bragg-like Dirac delta-function
peaks to occur below the critical temperature.

The resulting χ(q) is a continuous function, also called the structure
function giving information about the magnetic structure. It is not to be
confused with

F(q) = lim
L→∞

1

L
∑
r

∑
r′

eiq·(r
′−r)〈σr〉〈σr′〉, (32)

which is only nonzero below the critical temperature where 〈σr〉 ≡ k′1/4. This
F(q) is proportional then to the Bragg delta-function diffraction pattern that
crystallographers would be most interested in.

Figure 7: Density plots of χ(qx, qy) for k = 0.7. On the left: low-temperature
case; on the right: high-temperature case.
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The χ(q) can be evaluated numerically to high precision. To do this we
sum first over contributions with r − r′ about the same. This is defined by
taking two of the five grids of the pentagrid forming a periodic lattice with
rhombus faces and taking all contributions of spins in pairs of such faces of
this lattice that only differ by the same translation vector. For such a partial
sum there is only little variation in the number of rapidity lines of each of
the five grids passing between the spins. Finally we have to sum over all
different translation vectors that give a significant contribution.

All these pieces were brought together in a long Maple program, enabling
us to evaluate χ(q) for given q to high precision [60]. As the elliptic modulus
of the pentagrid Ising model approaches one, we see more and more peaks
forming. In figure 7 results are shown for k = 0.7. Below the critical temper-
ature part of the intensity is in Bragg peaks (Dirac delta functions) due to

〈σi〉 ≡ k′1/4 6= 0, which are not included in χ(qx, qy). There are no magnetic
Bragg peaks above the critical temperature.

This explains why the χ(q) pattern is more intense at the same k value
above the critical temperature. At the critical value of the elliptic modulus,
k = 1, the χ(qx, qy) obtains everywhere dense power-law divergences, while
remaining integrable over finite domains. Below criticality, the Bragg delta-
function peaks of (32) are also everywhere dense, while F(q) is similarly
integrable over finite domains.

7.8 Some final remarks

We note that we have also calculated χ(q) for Ising models on periodic lat-
tices, but with Fibonacci-type variation of the interactions [79], which is a
much easier problem. Comparison with the pentagrid Ising model results
allows us to see what different effects variations of interactions or of lattice
structure can have.

Finally, in this section we have shown how crucial de Bruijn’s pentagrid
construction is for several of the steps in the calculations within the pentagrid
Ising model [60], adding some new explanations not present in our earlier
work. The pentagrid picture of de Bruijn is truly powerful for calculations
on Penrose tilings.

This has not always been properly understood, as a number of people have
given priority to Robert Ammann for his Ammann bars, ignoring de Bruijn’s
work altogether. For the Penrose rhombus tiling one gets the Ammann bars
by decorating the rhombi with special Ammann lines as in figure 8, providing
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Figure 8: The skinny and fat rhombi with Ammann lines.

an alternative representation for Penrose’s matching rules. Assuming that
the rhombi have sides of length 1, two sides of each rhombus are split into
pieces of length cos(π/5) and 1 − cos(π/5), whereas the other two sides are
divided in three with lengths 1/2, [1−cos(2π/5)]/2 and cos(2π/5)/2, compare
also [80].

If the rhombi are properly matched together these Ammann line pieces
join to form the straight lines that are now commonly called Ammann bars,
see [13, fig. 7] or [40, fig. 5]. Unlike de Bruijn’s pentagrid, the five Ammann
grids are not equidistant, as the spacings now follow a Fibonacci pattern
[13, 40, 81].

At this moment it is not at all clear how the work of [60] could be redone
without significant extra complications using Ammann bars, even though de
Bruijn has argued [33], that the Ammann quasigrid is topologically equivalent
to the pentagrid. In particular, many details of [60] reviewed in subsection
7.6 depend on ratios of areas and simple translations, exploiting the grids
being equidistant.

In closing, note from figure 8 that the Ammann bars intersect once on each
edge of the Penrose tiling. This tempts us to propose a new Yang–Baxter
integrable Ising model with Ising spins on all vertices and Ising interactions
along all edges, with two especially chosen but different interactions for edges
intersected by two or by three Ammann bars. Even though there seems to
be no difficulty to obtain the free energy per edge in the thermodynamic
limit, the determination of pair correlations cannot be done just following
[65], as an odd number of rapidity lines can cross between spins, e.g. three
for a neighbor pair.
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