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Introduction v

0.1 Introduction

These lectures seek to present a coherent picture of some key aspects of topological
insulators and the quantum Hall effect. Rather than aiming for completeness or his-
torical accuracy, the goal is to show that a few important ideas, such as the Berry
phase and Chern and Chern-Simons differential forms, occur repeatedly and serve
as links between superficially different areas of physics. Non-interacting topological
phases, electrical polarization, and some transport phenomena in metals can all be
understood in a unified framework as consequences of Abelian and non-Abelian Berry
phases. The fractional quantum Hall effect is then discussed as an example of topolog-
ical order, and we introduce its description by the (Abelian) Chern-Simons topological
field theory.

Some effort has been made to avoid duplicating the material covered in other Les
Houches lectures, both past and present. Readers seeking alternative approaches and
a comprehensive list of references are encouraged to consult the many review articles
on topological insulators [11, 26, 12] and the recent book by Bernevig [32]. For the
fractional quantum Hall effect, our treatment parallels closely the review article of
Wen [30], and the Les Houches notes of Girvin [9] provide an overview of the topic
including more physical background than we provide here.

As part of our goal is to explain the topological invariants that underlie various
topological phases, we start with some preliminaries: a few examples of the two kinds
of topology (homotopy and cohomology) that appear most frequently in condensed
matter physics, and a derivation of the Berry phase formula for adiabatic transport.
No claims of rigor or completeness are made, and the book of Nakahara [22] is a good
place to start learning more; readers focused on physics content should feel free to
skip this section and refer back to it as necessary. Section 2 introduces non-interacting
topological phases of electrons (the integer quantum Hall effect and topological insu-
lators are two important examples) and related phenomena, focusing on topological
aspects. The concept of the Berry phase links these topological phases to important
physical observables such as electrical polarization and the magnetoelectric effect.

Section 3 discusses topological phases in interacting systems, using a field-theory
approach that starts with an example of topological terms in a conventional field the-
ory (the Haldane gap in spin systems) and then moves on to the purely topological
description of the fractional quantum Hall effect via Chern-Simons theory. Many addi-
tional steps in describing Chern-Simons field theory properly can be found in the Les
Houches notes of Dunne [5]. While neither the interacting nor non-interacting topo-
logical phases are discussed in full detail, it is hoped that this way of presenting them
gives some practical understanding of what it means for an electronic state of matter
to be “topological”.
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1.1 Mathematical preliminaries

1.1.1 An intuitive example of global geometry and topology:
Gauss-Bonnet

You may have heard a topologist described as “a mathematican who can’t tell the
difference between a donut and a coffee cup.” As an example of the connections be-
tween geometry and topology, we start by discussing an integral that will help us clas-
sify two-dimensional (2D) compact manifolds (surfaces without boundaries) embedded
smoothly in three dimensions. The integral we construct is “topologically invariant”
in that if one such surface can be smoothly deformed into another, then the two will
have the same value of the integral. The integral can’t tell the difference between the
surface of a coffee cup and that of a donut, but it can tell that the surface of a donut
(a torus) is different from a sphere. Such global integrals of geometrical quantities are
a common origin of topological quantities in physics.

We start with a bit of local geometry. Given our 2D surface in 3D, we can choose
coordinates at any point on the surface so that the (x, y, z = 0) plane is tangent to
the surface, which can locally be specified by a single function z(x, y). We choose
(x = 0, y = 0) to be the given point, so z(0, 0) = 0. The tangency condition is
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Hence we can approximate z locally from its second derivatives:
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The “Hessian matrix” that appears in the above is real and symmetric. It can be
diagonalized and has two real eigenvalues λ1, λ2, corresponding to two orthogonal
eigendirections in the (x, y) plane. The geometric interpretation of these eigenvalues is
simple: their magnitude is an inverse radius of curvature, and their sign tells whether
the surface is curving toward or away from the positive z direction in our coordinate
system. To see why the first is true, suppose that we carried out the same process for
a circle of radius r tangent to the x-axis at the origin. Parametrize the circle by an
angle θ that is 0 at the origin and traces the circle counter-clockwise, i.e.,

x = r sin θ, y = r(1− cos(θ)). (1.3)
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Near the origin, we have

y = r(1− cos(sin−1(x/r)) = r − (1− x2

2r2
) =

x2

2r
, (1.4)

which corresponds to an eigenvalue λ = 1/r of the matrix in Eq. 1.2.
Going back to the Hessian, its determinant (the product of its eigenvalues λ1λ2)

is called the Gaussian curvature and has a remarkable geometric significance. First,
consider a sphere of radius r, which at every point has λ1 = λ2 = 1/r. Then we can
integrate the Gaussian curvature over the sphere’s surface,∫

S2

λ1λ2 dA =
4πr2

r2
= 4π. (1.5)

Beyond simply being independent of radius, this integral actually gives the same value
for any compact manifold that can be smoothly deformed to a sphere.

However, we can easily find a compact manifold with a different value for the
integral. Consider the torus made by revolving the circle in Eq. 1.3, with r = 1,
around the axis of symmetry x = t, y = −1, z = 0, with −∞ < t < ∞. To compute
the Gaussian curvature at each point, we sketch the calculation of the eigenvalues
of the Hessian as follows. One eigenvalue is around the smaller circle, with radius
of curvature r: λ1 = 1/r = 1. Then the second eigenvalue must correspond to the
perpendicular direction, which has a radius of curvature that depends on the angle θ
around the smaller circle (we keep θ = 0 to indicate the point closest to the axis of
symmetry). The distance from the axis of symmetry is 2 − cos θ, so we might have
guessed λ2 = (2 − cos θ)−1, but there is an additional factor of cos θ that appears
because of the difference in direction between the surface normal and this curvature.
So our guess is that

λ2 = − cos θ

2− cos θ
(1.6)

As a check and to understand the sign, note that this predicts a radius of curvature
1 at the origin and other points closest to the symmetry axis, with a negative sign in
the eigenvalue indicating that this curvature is in an opposite sense as that described
by λ1. At the top, the radius of curvature is 3 and in the same sense as that described
by λ1, and on the sides, λ2 vanishes because the direction of curvature is orthogonal
to the tangent vector.

Now we compute the curvature integral. With φ the angle around the symmetry
axis, the curvature integral is∫

T 2

λ1λ2 dA =

∫ 2π

0

dθ

∫ 2π

0

(2− cos θ) dφλ1λ2 =

∫ 2π

0

dθ

∫ 2π

0

dφ (− cos θ) = 0.

(1.7)
Again this zero answer is generic to any surface that can be smoothly deformed to the
torus. The general result (the Gauss-Bonnet formula) of which the above are examples
is ∫

S

λ1λ2 dA = 2πχ = 2π(2− g), (1.8)
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where χ is a topological invariant known as the Euler characteristic and g is the
genus, essentially the number of “holes” in the surface. 1 For a compact manifold with
boundaries, the Euler characteristic becomes 2 − 2g − b, where b is the number of
boundaries: one can check this by noting that by cutting a torus, one can produce two
discs (by slicing a bagel) or alternately a cylinder with two boundaries (by slicing a
bundt cake).

More generally, we will encounter several examples where a topological invariant
is expressed as an integral over a local quantity with a geometric significance. We now
turn to a simpler example in order to allow us to introduce some basic concepts of
algebraic topology.

1.1.2 Invariant integrals along paths in two dimensions: exact forms

As our first example of a topological property, let’s ask about making line integrals
along paths (not path integrals in the physics sense, where the path itself is integrated
over 2) that are nearly independent of the precise path: they will turn out to depend
in some cases on topological properties (homotopy or cohomology). We will assume
throughout these notes, unless otherwise specified, that all functions are smooth (i.e.,
C∞, meaning derivatives of all orders exist).

First, suppose that we deal with paths on some open set U in the two-dimensional
plane R2. (Open set: some neighborhood of each point in the set is also in the set.)
We consider a smooth path (u(t), v(t)), where 0 ≤ t ≤ 1 and the endpoints may
be different. (To make these results more precise, we should provide for adding one
path to another by requiring only piecewise smooth paths, and require that u and v
be smooth in an open set including t ∈ [0, 1]. For additional rigor, see the first few
chapters of W. Fulton, “Algebraic Topology: A First Course”, Springer).

Now let f(x, y) = (p(x, y), q(x, y)) be a two-dimensional vector field that lets us
compute line integrals of this path:

W =

∫ 1

0

dt p
du

dt
+ q

dv

dt
dt, (1.9)

where p and q are evaluated at (x(t), y(t)).
Mathematical note: in more fancy language, f is a differential form, a “1-form”

to be precise. All that means is that f is something we can use to form integrals
over paths that are linear and probe the tangent vector of the path. Another way to
state this, with which you may be more familiar is that the tangent vector to a path,
which we call a “vector”, transforms naturally in an opposite way to the gradient of
a function, which we call a “covector”. To convince yourself that this is true, think
about how both transform under a linear transformation on the underlying space. We
will say a bit more about such forms in a moment.

1A good question is why we write the Euler characteristic as 2 − 2g rather than 1 − g; one
way to motivate this is by considering polygonal approximations to the surface. The discrete Euler
characteristic V − E + F , where V,E, F count vertices, edges, and faces, is equal to χ. For example,
the five Platonic solids all have V − E + F = 2.

2There are additional topological properties that emerge (“quantum topology”) when integrals
over paths and other structures are incorporated; actually the Chern-Simons field theory that we
discuss in Section 3 was an important tool in the history of that field.
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Our first goal is to show that the following three statements are equivalent: (a) W
depends only on the endpoints (u(0), v(0)) and (u(1), v(1)); (b) W = 0 for any closed
path; (c) f is the gradient of a function g: (p, q) = (∂xg, ∂yg); The formal language
used for (c) is that f is an exact form: f = dg is the differential of a 0-form (a smooth
function) g.

Note that (c) obviously implies (a) and (b), since then W = g(u(1), v(1)) −
g(u(0), v(0)). To show that (b) implies (a), suppose (b) is true and (a) is not. Then
there are two paths γ1, γ2 that have different integrals but the same endpoints. Form
a new path γ so that, as t goes from 0 to 1

2 , γ1 is traced, and then as t goes from 1
2 to

1, γ2 is traced opposite its original direction (now you can see why piecewise smooth
paths are needed if one wants to be rigorous). Then this integral is nonzero, which
contradicts (b).

It remains to show that (a) implies (c). Define g(x, y) as equal to 0 at (0, 0), or
some other reference point in U if U does not include the origin. Everywhere else, set
g equal to the W obtained by integrating over an arbitrary path from (0, 0) to the
final point, which by (a) is path-independent. (If U is not connected, then carry out
this process on each connected component.) We will show that ∂xg = p, and the same
logic then implies ∂yg = q. We need to compute

∂xg = lim
∆x→0

g(x+ ∆x, y)− g(x, y)

∆x
. (1.10)

We can obtain g by any path we like, so let’s take an arbitrary path to define g(x, y),
then add a short horizontal segment to that path to define the path for g(x+ ∆x, y).
The value of the integral along this extra horizontal segment converges to p(x, y)(∆x),
as needed.

It turns out that the above case is simple because the plane we started with is
“topologically trivial.” Before proceeding to look at a nontrivial example, let us state
one requirement on f that is satisfied whenever f is exact (f = dg). The fact that
partial derivatives commute means that, with f = dg = (p, q), ∂yp = ∂xq. We can
come up with an elegant notation for this property by expanding our knowledge of
differential forms.

Before, we obtained a 1-form f as the differential of a scalar g by defining

f = dg = ∂xg dx+ ∂yg dy. (1.11)

Note that we now include the differential elements dx, dy in the definition of f , and
that 1-forms form a real vector space (spanned by dx, dy): we can add them and
multiply them by scalars. To obtain a 2-form as the differential of a 1-form, we repeat
the process: writing f = fidxi (with x1 = x, x2 = y, f1 = p, f2 = q)

df =
∑
j

∂fi
∂xj

dxj ∧ dxi. (1.12)

where the ∧ product between differential forms satisfies the rule dxi∧dxj = −dxj∧dxi,
which implies that if any coordinate appears twice, then we get zero: dx∧ dx = 0. For



x Basic concepts

some intuition about why this anticommutation property is important, note that in
our 2D example,

df = (∂xfy − ∂yfx)dx ∧ dy, (1.13)

so that the function appearing in df is just the curl of the 2D vector field represented
by f . So our statement about partial derivatives commuting is just the statement that
if f = dg, then df = 0, or that the curl of a gradient is zero. We label any 1-form
satisfying df = 0 a closed form. While every exact form is also closed, we will see that
not every closed form is exact, with profound consequences.

1.1.3 Topologically invariant integrals along paths: closed forms

As an example of nontrivial topology, we would now like to come up with an example
where integrals over paths are only path-independent in a limited “topological” sense:
the integral is the same for any two paths that are homotopic, one of the fundamental
concepts of topology (to be defined in a moment). Basically, two paths are homotopic
if one can be smoothly deformed into another. Consider the vector field

f = (p, q) =

(
− y

x2 + y2
,

x

x2 + y2

)
=
−ydx+ xdy

x2 + y2
, (1.14)

where in the second step we have written it using our 1-form notation. This vector
field is well-defined everywhere except the origin. This 1-form looks locally like the
differential of g = tan−1(y/x) (which just measures the angle in polar coordinates),
but that function can only be defined smoothly on some open sets. For example, in
a disc around the origin, the 2π ambiguity of the inverse tangent prevents defining g
globally.

So if we have a path that lies entirely in a region where g can be defined, then the
integral of this 1-form over the path will give the change in angle between the starting
point and end point g(u(1), v(1)) − g(u(0), v(0)). What about other types of paths,
for example, paths in R2/{0, 0}, the 2D plane with the origin omitted, that circle the
origin and return to the starting point? We can still integrate using the 1-form f , even
if it is not the gradient of a scalar function g, and will obtain the value 2πn, where n
is the “winding number”: a signed integer that describes how many times the closed
path (u(t), v(t)) circled the origin as t went from 0 to 1.

Now this winding number does not change as we make a small change in the closed
path, as long as the path remains in R2/{0, 0}. What mathematical property of f
guarantees this? Above we saw that any exact 1-form (the differential of a scalar
function) is also closed. While f is not exact, we can see that it is closed:

df =

(
∂x

x

x2 + y2

)
dx ∧ dy +

(
∂y

−y
x2 + y2

)
dy ∧ dx =

2− 2

x2 + y2
dx ∧ dy = 0. (1.15)

In other words, (−y, x)/(x2+y2) is curl-free (“irrotational”), while (−y, x) has constant
nonzero curl. Now suppose that we are given two paths γ1 and γ2 that differ by going
in different ways around some small patch dA in which the 1-form remains defined.
The difference in the integral of f over these two paths is then the integral of df over
the enclosed surface by Stokes’s theorem, which is zero if f is a closed form.
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So we conclude that if f is a closed form, then the path integral is path-independent
if we move the path through a region where f is always defined. For an exact form, the
integral is completely path-independent. In the case of R/{0, 0}, the 1-form in Eq. 1.14
is locally but not completely path-independent. Both closed forms and exact forms are
vector spaces (we can add and multiply by scalars), and typically infinite-dimensional,
but their quotient as vector spaces is typically finite-dimensional. (The quotient of a
vector space A by a vector space B is the vector space that identifies any two elements
of A that differ only by an element of B). A basic object in “cohomology” is the first
de Rham cohomology group (a vector space is by definition a group under addition),

H1(M) =
closed 1-forms on M

exact 1-forms on M
=
Z1(M)

B1(M)
. (1.16)

If you wonder why the prefix “co-” appears in “cohomology”, there is a dual theory of
linear combinations of curves, etc., called homology, in which the differential operator
in de Rham cohomology is replaced by the boundary operator. However, while it may
be equally more basic mathematically, homology seems to crop up less frequently in
physics.

In this introductory discussion, we will focus on cohomology with real coefficients.
The first and second Chern numbers defined later and applied to topological phases are
related to elements of the even cohomology groups with integer coefficients H2k(M,Z).
An even simpler object is the zeroth de Rham cohomology group. To understand this,
realize that a closed 0-form is one whose gradient is zero, i.e., one that is constant on
each connected component of U . There are no (-1)-forms and hence no exact 0-forms.
So the zeroth group is just Rn, where n is the number of connected components.

We can show that H1 = R for the unit circle S1 using the angle form f in Eq. 1.14,
by showing that this form (more precisely, its equivalence class up to exact forms)
provides a basis for H1. Given some other form f ′, we use the unit circle path,
parametrized by an angle θ going from zero to 2π, to define

c =

∫ 2π

0
f ′∫ 2π

0
f
. (1.17)

Now f ′ − cf integrates to zero. We can define a function g via

g(θ) =

∫ θ

0

(f ′ − cf). (1.18)

Now g is well-defined and periodic because of how we defined c, and f ′ = cf + dg,
which means that f ′ and cf are in the same equivalence class as dg is an exact form.
We say that f ′ and f are cohomologous because they differ by an exact form. So cf ,
c ∈ R, generates H1, and H1(S1) is isomorphic to R. With a little more work, one can
show that R/{0, 0} also has H1 = R.

Actually we can connect the results of this section to the previous one: a general
expression for the Euler characteristic is

χ(M) =
∑
i

(−1)i dimHi(M) =
∑
i

(−1)i dim
Zi(M)

Bi(M)
. (1.19)
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The dimension of the ith cohomology group is called the ith Betti number (to be
pedantic, the Betti numbers are defined for homology rather than cohomology, but
we can use a duality relationship). There is a compact way to express the idea of
cohomology and homology that will let us introduce some notation and terminology.
If Ωr is the vector space of r-forms, and Cr is the dual space of r-chains, then the
action of the boundary operator and the differential is as follows:

←− Cr ←−−−
∂r+1

Cr+1 ←−−−
∂r+2

Cr+2 ←−

−→ Ωr −−−→
dr+1

Ωr+1 −−−→
dr+2

Ωr+2 −→ . (1.20)

The rth cohomology group is the quotient ker dr+1/im dr, and the rth homology group
is ker ∂r/im ∂r+1.

The duality relationship is provided by Stokes’s theorem. Recall that this theorem
relates the integral of a form over a boundary to the integral of the differential of the
form over the interior. In terms of the linear operator (f, c) that evaluates the form f
on the chain c, we have the compact expression

(f, ∂c) = (df, c). (1.21)

Now we move on to a different type of topology that is perhaps more intuitive and will
be useful for our first physics challenge: how to classify defects in ordered systems.

1.1.4 Homotopy

What if we did not want to deal with smooth functions and calculus? An even more
basic type of topology is homotopy theory, which can be defined without reference
to calculus, differential forms, etc. Suppose that we are given a continuous map from
[0, 1] to a manifold M such that 0 and 1 get mapped to the same point; we can think
of this as a closed curve on M . We say that two such curves γ1, γ2 are homotopic if
there is a continuous function (a homotopy) f from [0, 1]× [0, 1] to M that satisfies

f(x, 0) = γ1(x), f(x, 1) = γ2(x). (1.22)

Intuitively, f describes how to smoothly distort γ1 to γ2. Now homotopy is an equiv-
alence relation and hence defines equivalence classes: [γ1] is the set of all paths ho-
motopic to γ1. Furthermore, concatenation of paths (i.e., tracing one after the other)
defines a natural group structure on these equivalence classes: the inverse of any path
can be obtained by tracing it in the opposite direction. (To be precise, one should
define homotopy with reference to a particular point where paths start and end; for
a symmetric space where all points are basically equivalent, this is unnecessary.) We
conclude that the equivalence classes of closed paths form a group π1(M), called the
fundamental group or first homotopy group. Higher homotopy groups πn(M) are ob-
tained by considering mappings from the n-sphere Sn to M in the same way.

The homotopy groups of a manifold are not independent of the cohomology groups:
for example, if π1(M) is trivial, then so is the first de Rham group. The cohomology
groups are always Abelian; in general, the first de Rham group with integer coefficients
is the Abelianization of π1 (which need not be Abelian, although higher homotopy
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groups are). If you are interested in further details, the result of Hurewicz gives a
relationship between higher cohomology and homotopy groups. The examples above
of R2/{0, 0} and S1 both have π1(M) = Z: there is an integer-valued winding number
that we can use to classify paths, and this winding number can be computed by the
angle form given above. So our two-dimensional examples already contains the two
types of topology that occur most frequently in physics: cohomology and homotopy.
We will return to homotopy in much more detail in a moment, when we explain how it
can be used to classify topological defects such as vortices in broken-symmetry phases.

1.1.5 Application of homotopy to topological defects in
symmetry-breaking phases

As a direct physical application of homotopy theory, consider the notion of a “vortex”
in an ordered phase such as a superfluid. Such a configuration has a core where there
is no order, but far away from the core the system is always locally in an ordered state.
However, which ordered state the system is in varies smoothly as we move around the
vortex core. For a 2D defect with a point core, such as a vortex of the 2D XY model,
the vortex core is enclosed by a large real-space circle S1, and as we move around this
circle we have a map from S1 to S1, where the first circle is real space and the second
circle reflects that the “order parameter manifold” of distinct ordered configurations
of the XY model is also a circle.

The mathematical classification of topological defects has been carried out for a
variety of systems. Vortex-like defects (defects that can be circled by a loop) are
related to the group Π1(M), where M is the manifold of degenerate values of the
order parameter once its magnitude has been set (for example, S1 for XY and S2 for
Heisenberg, where Sd is the unit sphere in d+ 1 dimensions). π1(M) is known as the
first homotopy group and is the group of equivalence classes of mappings from S1 to
M : for example, the mappings from S1 to S1 are characterized by an integer winding
number n ∈ Z, so π1(S1) = Z, while π1(S2) = 0 (the group with one element) as any
loop on the sphere is contractible to a point.

In other words, π1(M) gives the set of equivalence classes up to smooth defor-
mations of closed paths on M . Multiplication of equivalence classes in the group is
defined by concatenation of paths. The second homotopy group π2(M) classifies map-
pings from S2 to M , and describes defects circled by a sphere, such as pointlike defects
in 3D. For example, π2(S2) is nonzero, and there are stable point defect configura-
tions of Heisenberg spins (known descriptively as “hedgehogs”) but not of XY spins.
There can also be topological configurations that are not “defects” but not homotopic
to the identity: the most famous example is the skyrmion configuration of a uniaxial
ferromagnet in 2D, where all spins at infinity point in the same direction and the spin
direction moves in the plane in such a way as to cover the sphere once. Shankar’s
monopoles and other defect-free configurations in 3D are related to the group π3.

There is a considerable technology built up for the calculation of homotopy groups
of general order parameter manifolds M = G/H, whose elements are cosets of the
residual symmetry group H, i.e., any symmetries that survive in the ordered phase,
in the high-temperature symmetry group G. For example, for a uniaxially ordered
Heisenberg ferromagnet, G = SO(2) and H = SO(3) so indeed M = S2 as anticipated
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earlier. The advent of complicated ordered states in systems such as liquid crystals
and spinor condensates stimulated the development of the techniques described in the
Review of Modern Physics article by N. D. Mermin. [18]

1.2 Berry phases in quantum mechanics

We now turn to a beautiful geometric property of quantum mechanics that was un-
derstood relatively recently: the geometric or Berry phase. The connection to the
Gauss-Bonnet theorem we mentioned earlier is as follows. Curvature is a property
of Riemannian manifolds, which have a (real) inner product defined on the tangent
space at each point. (The combination of a differentiable manifold and its tangent
space at each point is the “tangent bundle”, the simplest example of a vector bun-
dle, an attachment of a vector space to each point of a manifold.) This inner product
varies smoothly from point to point, which allows us to define a number of important
concepts, including parallel transport and curvature.

Frequently in quantum mechanics we have, instead of a tangent space, a Hilbert
space (including an Hermitian inner product) that varies smoothly from point to point
in parameter space. Hence one can think of the Berry-phase objects we are about
to define as really quite similar to curvature and related properties on Riemannian
manifolds, except that the Berry phase does not come from the intrinsic geometry of
the manifold of parameters but rather with how the attached Hilbert space evolves as
parameters change.

An important result from undergraduate quantum mechanics is the “adiabatic
approximation”. Suppose that a system is prepared in a nondegenerate eigenstate of
a time-dependent Hamiltonian H. For later reference, we will write H as a function of
some parameters λi that depend on time: H(t) = H(λ1(t), λ2(t), . . .). If the eigenstate
remains nondegenerate, then the adiabatic approximation is the result that if the
Hamiltonian changes slowly in time (how slowly depends primarily on the energy gap
between adjacent eigenstates), then there are no transitions between eigenstates.

This approximation, even when correct, only gives part of the story: it describes
the probability to remain in the eigenstate that evolved from the initial eigenstate,
but there is actually nontrivial information in the phase of the final state as well. This
result may seem quite surprising because the overall phase in quantum mechanics
is in general independent of observable quantitites. However, the Berry phase from
an adiabatic evolution is observable: for example, one system can be taken around a
closed path in parameter space, while another system initially identical to the first
can be taken around a different path, or the null path; an interference experiment on
the final states will reveal the Berry phase. The first example of this type of geometric
phase in physics was found more than fifty years ago by Pancharatnam in an optical
example, but the classic Berry paper of 1984 was the first to explain the concept in
its full generality.

Berry’s result for a closed path is relatively simple to state, but some careful
thought is required to understand and derive it. In moving a system adiabatically
around a closed path in parameter space, the final wavefunction is in the same eigen-
state as the initial one (again, under the assumptions of the adiabatic approximation
as stated above), but its phase has changed:
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|ψ(tf )〉 = e−(i/~)
∮ tf
ti

E(t′) dt′eiγ |ψ(ti)〉. (1.23)

Here E(t′) means the corresponding eigenvalue of the Hamiltonian at that time, and
γ is the Berry phase, expressed as an integral over a path in parameter space with no
time-dependence:

γ = i

∫
〈ψ̃(λi)|∇λ|ψ̃(λi)〉 · dλ. (1.24)

Note that there are two different wavefunctions ψ and ψ̃ in the above formulas. ψ(t)
has a time argument and means the wavefunction of the system at that time. The “ref-
erence wavefunction” ψ̃(λi) has a parameter argument and indicates the wavefunction
we have chosen of the Hamiltonian for that value of the parameters, which we assume
to be smoothly varying 3 A key assumption of the following derivation is that there
is some smooth choice of the ψ̃(λi) throughout a surface in parameter space with the
loop as boundary.

For an open path, we need to describe the phase of the wavefunction relative to
this reference set, so the expression becomes more complicated (for the closed path, we
could simply compare the initial and final wavefunctions, without needing the reference
set at these points). We will show that, assuming ψ(ti) = ψ̃(λ(ti)) so that the initial
wavefunction is equal to the reference state at the corresponding value of parameters,

〈ψ̃(λi(t))|ψ(t)〉 = e−(i/~)
∫ t
0
E(t′) dt′eiγ ≡ eiθ(t), (1.25)

i.e., the Berry phase appears as an extra contribution, beyond the expected contribu-
tion related to the energy, when comparing the actual time-dependent evolved state
ψ(t) to the reference state at the same point in parameter space λi(t). We write θ(t)
for the total phase including both energetic and Berry contributions. We can take the
time derivative using the time-dependent Schrödinger equation

i~
∂ψ

∂t
= H(t)ψ. (1.26)

The first two quantities in (1.25) agree initially from our choice of the phase of ψ(ti).
The time derivative of the leftmost is

〈ψ̃(λi(t))|
−iE(t)

~
|ψ(t)〉+

dλj
dt
〈∂λj ψ̃(λi(t))|ψ(t)〉, (1.27)

Since eiθ(t) = 〈ψ(λi(t))|ψ(t)〉, this gives

i∂tθ(t) = i

[
d

dt
eiθ(t)

]
(−ie−iθ(t))

3A smooth choice of reference wavefunctions is always possible locally but not possible globally,
as in the example of a spin-half particle moving in a Zeeman magnetic field. Computing the Berry
phase in this example is a nice exercise for the reader, and also physically useful: in making a path
integral for a quantum spin, one needs to include a term that reflects the Berry phase of the path
in time (either real or imaginary), and we will use this in Section 3. A pedagogical derivation of this
path integral including the Berry phase is in the book of Auerbach [2].
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=

(
−iE(t)

~
〈ψ̃(λi(t))|+

dλj
dt
〈∂λj |ψ̃(λi(t))|

)
|ψ(t)〉〈ψ(t)|ψ̃(λi(t))〉, (1.28)

and this is satisfied if we set (note that for E we do not need to distinguish between
time and λ dependent)

∂tθ(t) = −E(t)

~
− idλj

dt
〈∂λj ψ̃(λi(t))|ψ̃(λi(t))〉, (1.29)

which is our desired conclusion. We used the fact that ψ and ψ̃ differ only by a phase
factor, since they describe the same non-degenerate state, to eliminate |ψ〉〈ψ|.

The “Berry connection” or “Berry vector potential” Aj = i〈ψ(λi)|∂λjψ(λi)〉 is real,

which follows from noting that ∂λj 〈ψ̃((λi)|ψ̃(λi)〉 = 0 by constancy of normalization. It
is required for a nonzero Berry phase that H evolve in such a way that the wavefunction
changes by more than just a phase, so that that the evolution of the wavefunction is
more than just a simple phase factor, even though the actual rate of change in H drops
out and only the path taken by H enters the Berry phase.

Now one can ask whether the Berry connection A is independent of how we chose
the reference wavefunctions (in this case, the U(1) degree of freedom in the wave-
function at each λ). While for an open path it clearly is not phase-independent, the
Berry phase is phase-independent for a closed path, for exactly the same reasons as a
closed line integral of A is gauge-independent in electrodynamics: we can integrate the
“Berry flux” or “Berry curvature” εij∂iAj (which you can check is phase-independent,
just like Fµν in electrodynamics) on the surface bounded by the path. Alternately, we
can note that a phase change changes A by the gradient of a scalar, so that on a closed
loop, there is no change.

Independent of Berry’s work and at roughly the same time, condensed matter
physicists such as Thouless were realizing that Berry phases of wavefunctions on the
Brillouin zone have the same mathematical structure of gauge fields in parameter
space, even though there is no longer a notion of time evolution. The Berry vector po-
tential A is a way to compare or “connect” the Hilbert spaces at neighboring points in
parameter space. The gauge-invariant or nearly gauge-invariant quantities constructed
from A and its derivatives control a variety of physical quantities. For the specific case
of wavefunctions on the Brillouin zone, we will see that A is intimately related to the
location of the wavefunctions within the unit cell in real space.

To get some geometric intuition for what the Berry phase means in general, we
explain why the Berry connection A is called a connection, and the flux F is sometimes
called a curvature. A connection is a way to compare vector spaces that are attached
to different points of a manifold, forming a “vector bundle”. In our case, there is a one-
dimensional complex vector space attached at each point in parameter space, spanned
by the local eigenstate. The inner product lets us compare vectors at the same point
in parameter space, but the Berry connection appears when we try to compare two
vectors from slightly different points.

An example we used above of a real vector bundle is the “tangent bundle” to a
Riemannian manifold (say, a sphere), made up of tangent vectors at each point, which
have a dot product corresponding to the inner product in quantum mechanics. The
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connection in this case, which gives rise to “parallel transport” of tangent vectors, is
related to the same curvature that we previously discussed with the Gauss-Bonnet
theorem. Consider an airplane moving around the surface of the Earth and carrying
a gyroscope that is fixed to lie in the tangent plane to the Earth’s surface (i.e., free
to rotate around the normal axis to the tangent plane). If the airplane follows a great
circle, then it will appear to be going straight ahead to a passenger on board, and the
gyroscope will not rotate relative to the plane’s axis.

However, if the airplane follows a line of latitude other than the equator, or any
other path that is not a “geodesic” (see a differential geometry text for details), it
will feel constantly as though it is turning, and the gyroscope will appear to rotate
relative to the airplane’s direction. After going around a closed path in the airplane,
the gyroscope may have rotated compared to a stationary gyroscope (the same physics
that underlies Foucault’s pendulum). As an exercise, you can work out that the total
angle of rotation in circling a line of latitude is 2π sin(φ), where φ is the latitude. At
the equator this gives no rotation, while at the north pole this gives a 2π rotation.
This is a geometrical version of the same idea of holonomy (failure of a gyroscope to
return to its initial direction) that underlies the Berry phase.

Note that a vector potential in a gauge theory and the associated Wilson loop are
also examples of the concept of holonomy in a (now complex) vector bundle. The U(1)
Berry phase described above generalizes immediately to a non-Abelian U(N) Berry
phase when there are degenerate states or the energy differences between states are
irrelevant, which has some important applications in condensed matter that were only
recently discovered. Our primary mathematical objects in the following lectures will be
properties of the wavefunctions on the Brillouin zone, which form a Hermitian bundle
(a smoothly varying Hilbert space) on the d-dimensional torus.

One reason for introducing the idea of cohomology above was to give a sense for the
mathematical structures hiding in the background of the simple calculations we do:
to pick one example, the integral physicists do to calculate the Chern number, which
determines the contribution of a filled 2D band to the quantum Hall effect, would be
viewed by a mathematician as using the first Chern form to classify smooth complex
line bundles on the Brillouin zone, and the group of line bundles under tensor products
is isomorphic to the second cohomology class with integer coefficients. However, our
hope is that the physical examples we discuss will be readily comprehensible even for
readers not terribly excited about algebraic technology.
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Topological phases I: Thouless
phases arising from Berry phases

The integer quantum Hall effect has the remarkable property that, even at finite
temperature in a disordered material, a transport quantity is quantized to remarkable
precision: the transverse (a.k.a. Hall) conductivity is σxy = ne2/h, where n is integral
to 1 part in 109. This quantization results because the transport is determined by a
topological invariant, as stated most clearly in work of Thouless and collaborators.
Consequently we use the term “Thouless phases” for phases where a response function
is determined by a topological invariant.

In the cases we discuss, including the recently discovered “topological insulators”
and quantum spin Hall effect, this topological invariant results from integration of an
underlying Berry phase. It turns out that the Berry phase can be rather important
even when it is not part of a topological invariant. In crystalline solids, the electri-
cal polarization, the anomalous Hall effect, and the magnetoelectric polarizability all
derive from Berry phases of the Bloch electron states, which are introduced in the fol-
lowing subsection. We will avoid the conventional textbook presentation of the IQHE
in terms of Landau levels of a continuum electron. As we will use Landau levels when
we discuss the fractional quantum Hall effect later, readers who are unfamiliar with
the IQHE may wish to learn the standard treatment (see, e.g., Ref. [9]) and compare
it to the approach using Bloch electrons below. The connection between the two can
be made precise in the limit of small flux per unit cell, when a flat magnetic Bloch
band becomes equivalent to a Landau level.

2.0.1 Bloch states

One of the cornerstones of the theory of crystalline solids is Bloch’s theorem for elec-
trons in a periodic potential. We will demonstrate this in the following form: given a
potential invariant under a set of lattice vectors R, V (r + R) = V (r), the electronic
eigenstates can be labeled by a “crystal momentum” k and written in the form

ψk(r) = eik·ruk(r), (2.1)

where the function u has the periodicity of the lattice. Note that the crystal momentum
k is only defined up to addition of reciprocal lattice vectors, i.e., vectors whose dot
product with any of the original lattice vectors is a multiple of 2π.

We give a quick proof of Bloch’s theorem in one spatial dimension, then consider
the Berry phase of the resulting wavefunctions. A standard fact from quantum me-
chanics tells us that, given two Hermitian operators that commute, we can find a basis
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of simultaneous wavefunctions. In the problem at hand, we have a non-Hermitian oper-
ator (lattice translations by the lattice spacing a: (Tψ)(x) = ψ(x+a)) that commutes
with the Hamiltonian. It turns out that only one of the two operators needs to be Her-
mitian for simultaneous eigenstates to exist, and therefore we can find wavefunctions
that are energy eigenstates and satisfy

(Tψ)(x) = λψ(x). (2.2)

Now if the magnitude of λ is not 1, repeated application of this formula will give a
wavefunction that either blows up at spatial positive infinity or negative infinity. We
would like to find wavefunctions that can extend throughout an infinite solid with
bounded probability density, and hence require |λ| = 1. From that it follows that
λ = eiθ, and we define k = θ/a, where we need to specify an interval of width 2π to
uniquely define θ, say [−π, π). In other words, k is ambiguous by addition of a multiple
of 2π/a, as expected. So we have shown

ψk(x+ a) = eikaψk(x). (2.3)

The last step is to define uk(x) = ψk(x)e−ikx; then (2.3) shows that uk is periodic
with period a, and ψk(x) = eikxuk(x). 1

While the energetics of Bloch wavefunctions underlies many properties of solids,
there is also Berry-phase physics arising from the dependence of uk on k that was
understood only rather recently. Note that, even though this is one-dimensional, there
is a nontrivial “closed loop” in the parameter k that can be defined because of the
periodicity of the “Brillouin zone”’ k ∈ [−π/a, π/a):

γ =

∮ π/a

−π/a
〈uk|i∂k|uk〉dk. (2.4)

How are we to interpret this Berry phase physically, and is it even gauge-invariant?
We will derive it from scratch below, but an intuitive clue is provided if we make the
replacement i∂k by x, as would be appropriate if we consider the action on a plane
wave. This suggests, correctly, that the Berry phase may have something to do with
the spatial location of the electrons, but evaluating the position operator in a Bloch
state gives an ill-defined answer; for this real-space approach to work, we would need
to introduce localized “Wannier orbitals” in place of the extended Bloch states.

Another clue to what the phase γ might mean physically is provided by asking if
it is gauge-invariant. Before, gauge-invariance resulted from assuming that the wave-
function could be continuously defined on the interior of the closed path. Here we have
a closed path on a noncontractible manifold; the path in the integral winds around
the Brillouin zone, which has the topology of the circle. What happens to the Berry
phase if we introduce a phase change φ(k) in the wavefunctions, |uk〉 → e−iφ(k)|uk〉,

1Readers interested in more information and the three-dimensional case can consult any solid state
text, e.g., Ashcroft and Mermin [1].
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with φ(π/a) = φ(−π/a) + 2πn, n ∈ Z? Under this transformation, the integral shifts
as

γ → γ +

∮ π/a

−π/a
(∂kφ) dk = γ + 2πn. (2.5)

So redefinition of the wavefunctions shifts the Berry phase. This corresponds to chang-
ing the polarization by a multiple of the “polarization quantum”, which in one dimen-
sion is just the electron charge. (In higher dimensions, the polarization quantum is
one electron charge per transverse unit cell area.) Physically the ambiguity of po-
larization corresponds to the following idea: given a system with a certain bulk unit
cell, there is an ambiguity in how that system is terminated and how much surface
charge is at the boundary; adding an integer number of charges to one allowed termi-
nation gives another allowed termination [28]. The Berry phase is not gauge-invariant,
but any fractional part it had in units of a is gauge-invariant. However, the above
calculation suggests that, to obtain a gauge-invariant quantity, we need to consider a
two-dimensional crystal rather than a one-dimensional one. Then integrating the Berry
curvature, rather than the Berry connection, has to give a well-defined gauge-invariant
quantity.

We will give a physical interpretation of γ in the next section as a one-dimensional
polarization by relating changes in γ to electrical currents. (A generalization of this
Berry phase is remarkably useful for the theory of polarization in real, three-dimensional
materials.) In the next section we will understand how this one-dimensional example
is related to the two-dimensional integer quantum Hall effect. Historically the under-
standing of Berry phases in the latter came first, in a paper by Thouless, Kohmoto,
den Nijs, and Nightingale [29]. They found that, when a lattice is put in a commensu-
rate magnetic field (one with rational flux per unit cell, in units of the flux quantum
so that Bloch’s theorem applies), each occupied band j contributes an integer

nj =
i

2π

∫
dkx dky

(
〈∂kxuj |∂kyuj〉 − 〈∂kyuj |∂kxuj〉

)
(2.6)

to the total Hall conductance:

σxy =
e2

h

∑
j

nj . (2.7)

Now we derive this topological quantity (the “Chern number”, expressed as an integral
over the Berry flux, which is the curl of the Berry connection Aj = i〈uj |∇kuj〉) for
the case of one-dimensional polarization, then explain its mathematical significance.

2.0.2 1D polarization and 2D IQHE

We start with the question of one-dimensional polarization mentioned earlier. More
precisely, we attempt to compute the change in polarization by computing the integral
of current through a bulk unit cell under an adiabatic change:

∆P =

∫ 1

0

dλ
dP

dλ
=

∫ t1

t0

dt
dP

dλ

dλ

dt
=

∫ t1

t0

j(t) dt. (2.8)
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In writing this formula, we are assuming implicitly that there will be some definition
of dP in terms of a parameter λ of the bulk Hamiltonian. Our treatment will follow
that of Resta [28], but with a few more mathematical details in the derivation. (We
write q for one-dimensional momentum and kx, ky for two-dimensional momenta in
the following.) We will use Bloch’s theorem in the following form: the periodic single-
particle orbitals un(q, r) are eigenstates of

H(q, λ) =
1

2m
(p+ ~q)2 + V (λ)(r). (2.9)

The current operator is

j(q) = ev(q) =
ie

~
[H(q, λ), r] =

e

m
(p+ ~q) =

e

~
∂qH(q, λ). (2.10)

The current at any fixed λ in the ground state is zero, but changing λ adiabatically
in time drives a current that generates the change in polarization. To compute this
current, we need to use the first correction to the adiabatic theorem (cf. the quantum
mechanics book of Messiah). Following Thouless, we choose locally a gauge in which the
Berry phase is zero (this can only be done locally and is only meaningful if we obtain
a gauge-invariant answer for the instantaneous current), and write for the many-body
wavefunction

|ψ(t)〉 = exp

(
−(i/~)

∫ t

E0(t′) dt′
)|ψ0(t)〉+ i~

∑
j 6=0

|ψj(t)〉(Ej − E0)−1〈ψj(t)|ψ̇0(t)〉

 .
(2.11)

Here Ei(t) are the local eigenvalues and |ψj(t)〉 a local basis of reference states. The
first term is just the adiabatic expression we derived before, but with the Berry phase
eliminated with a phase rotation to ensure 〈ψ0(t)|ψ̇0(t)〉 = 0.

We want to use the above expression to write the expectation value of the current.
The ground state must differ from the excited state by a single action of the (one-
body) current operator, which promotes one valence electron (i.e., an electron in an
occupied state) to a conduction electron. Using the one-particle states, we get

dP

dλ
= 2~e Im

∑
v,c

∫
dq

2π

〈uv(q)|v(q)|uc(q)〉〈uc(q)|∂λuv(q)〉
Ec(q)− Ev(q)

. (2.12)

For example, we wrote

〈ψj(t)|ψ̇0(t)〉 =
∑
v,c

〈uc|∂λuv〉
dλ

dt
. (2.13)

This sum involves both valence and conduction states. For simplicity we assume a
single valence state in the following. We can rewrite the sum simply in terms of the
valence state using the first-order time-independent perturbation theory expression for
the wavefunction change under a perturbation Hamiltonian H ′ = dq ∂qH:
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|∂quj(q)〉 =
∑
j 6=j′
|uj′(q)〉

〈uj′(q)|∂qH(q, λ)|uj(q)〉
Ej(q)− Ej′(q)

. (2.14)

Using this and v(q) = 1
~∂qH(q, λ) we obtain

dP

dλ
= 2~e Im

∑
c

∫
dq

2π

〈uv(q)|v(q)|uc(q)〉〈uc(q)|∂λuv(q)〉
Ec(q)− Ev(q)

= 2e Im

∫
dq

2π
〈∂quv(q)|∂λuv(q)〉.

(2.15)
We can convert this to a change in polarization under a finite change in parameter λ:

∆P = 2e Im

∫ 1

0

dλ

∫
dq

2π
〈∂quv(q)|∂λuv(q)〉. (2.16)

The last expression is in two dimensions and involves the same type of integrand (a
Berry flux) as in the 2D TKNN formula (2.6). However, in the polarization case there
does not need to be any periodicity in the parameter λ. If this parameter is periodic,
so that λ = 0 and λ = 1 describe the same system, then the total current run in a
closed cycle that returns to the original Hamiltonian must be an integer number of
charges, consistent with quantization of the TKNN integer in the IQHE.

If we define polarization via the Berry connection,

P = ie

∫
dq

2π
〈uv(q)|∂quv(q)〉, (2.17)

so that its derivative with respect to λ will give the result above with the Berry flux,
we note that a change of gauge changes P by an integer multiple of the charge e. Only
the fractional part of P is gauge-independent. The relationship between polarization
in 1D, which has an integer ambiguity, and the IQHE in 2D, which has an integer
quantization, is the simplest example of the relationship between Chern-Simons forms
in odd dimension and Chern forms in even dimension. We will turn soon to the math-
ematical properties of these differential forms, which in the case above (and others to
be discussed) came from the Berry phases of a band structure.

2.0.3 Interactions and disorder: the flux trick

One might worry whether the TKNN integer defined in equation (2.6) is specific to
noninteracting electrons in perfect crystals. An elegant way to generalize the definition
physically, while keeping the same mathematical structure, was developed by Niu,
Thouless, and Wu [23]. This definition also makes somewhat clearer, together with
our polarization calculation above, why this invariant should describe σxy. First, note
that from the formula for the Bloch Hamiltonian in the polarization calculation above,
we can reinterpret the crystal momentum q as a parameter describing a flux threaded
through a unit cell of size a: the boundary conditions are periodic up to a phase
eiqa = eieΦ/~c. We will start by reinterpreting the noninteracting case in terms of such
fluxes, then move to the interacting case.

The setup is loosely similar to the Laughlin argument for quantization in the IQHE.
Consider adiabatically pumping a flux Φx though one circle of a toroidal system, in
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the direction associated with the periodicity x → x + Lx, y → y. The change in this
flux in time generates an electric field pointing in the x̂ direction. Treating this flux
as a parameter of the crystal Hamiltonian, we compute the resulting change in ŷ
polarization, which is related to the y current density:

dPy
dt

= jy =
dPy
dΦx

dΦx
dt

=
dPy
dΦx

(cExLx). (2.18)

We are going to treat the polarization Py as an integral over y flux but keep Φx as a
parameter. Then [24]

Py(Φx) =
ie

2π

∫
dΦy 〈u|∂Φyu〉 (2.19)

and we see that polarization now has units of charge per length, as expected. In
particular, the polarization quantum in the y direction is now one electronic charge
per Lx. The last step to obtain the quantization is to assume that we are justified in
averaging jy over the flux:

〈jy〉 = 〈 dPy
dΦx
〉(cExLx)→ ∆Py

∆Φx
(cExLx), (2.20)

where ∆ means the change over a single flux quantum: ∆Φx = hc/e. So the averaged
current is determined by how many y polarization quanta change in the periodic
adiabatic process of increasing the x flux by hc/e

〈jy〉 =
e

hc

ne

Lx
(cExLx) =

ne2

h
Ex. (2.21)

The integer n follows from noting that computing dPy/dΦx and then integrating dΦx
gives just the expression for the TKNN integer (2.6), now in terms of fluxes.

2.0.4 TKNN integers, Chern numbers, and homotopy

In this section we will give several different ways to understand the TKNN integer or
Chern number described above. First, a useful trick for many purposes is to define the
Berry flux and first Chern number in a manifestly gauge-invariant way, using projection
operators. For the case of a single non-degenerate band, define Pj = |uj〉〈uj | at each
point of the Brillouin zone. This projection operator is clearly invariant under U(1)
transformations of uj . The Chern number can be obtained as

nj =
i

2π

∫
Tr [dPj ∧ Pj dPj ] , (2.22)

where ∧ is the wedge product and dPj = ∂kxPj dkx + ∂kyPj dky is a differential form
where the coefficients are operators. (Note that the wedge product in the above formula
acts only on dkx and dky.) It is a straightforward exercise to verify that this reproduces
the TKNN definition (2.6).

Then the generalization to degenerate bands, for example, is naturally studied by
using the gauge- and basis-invariant projection operator Pij = |ui〉〈ui|+ |uj〉〈uj | onto
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the subspace spanned by |ui〉 and |uj〉: the index of this operator gives the total Chern
number of bands i and j. In general, when two bands come together, only their total
Chern number is defined. The total Chern number of all bands in a finite-dimensional
band structure (i.e., a finite number of bands) is argued to be zero below. Often one
is interested in the total Chern number of all occupied bands because this describes
the integer quantum Hall effect through the TKNN formula; because of this zero sum
rule, the total Chern number of all unoccupied bands must be equal and opposite.

In the remainder of this section, we use a powerful homotopy argument of Avron,
Seiler, and Simon to show indirectly that there is one Chern number per band, but with
a “zero sum rule” that all the Chern numbers add up to zero. We will not calculate
the Chern number directly, but rather the homotopy groups of Bloch Hamiltonians.
To get some intuition for the result, we first consider the example of a nondegenerate
two-band band structure, then give the general result, which is an application of the
“exact sequence of a fibration” mentioned in the Introduction.

The Bloch Hamiltonian for a two-band nondegenerate band structure can be writ-
ten in terms of the Pauli matrices and the two-by-two identity as

H(kx, ky) = a0(kx, ky)1 + a1(kx, ky)σx + a2(kx, ky)σy + a3(kx, ky)σz. (2.23)

The nondegeneracy constraint is that a1, a2, and a3 are not all simultaneously zero.
Now we first argue that a0 is only a shift in the energy levels and has no topological
significance, i.e., it can be smoothly taken to zero without a phase transition. Similarly
we can deform the other a functions to describe a unit vector on Z2: just as the
punctured plane R2−{0, 0} can be taken to the circle, we are taking punctured three-
space to the two-sphere via

(a1, a2, a3)→ (a1, a2, a3)√
a1

2 + a2
2 + a3

2
(2.24)

at each point in k-space.
Now we have a map from T 2 to S2. We need to use one somewhat deep fact: under

some assumptions, if π1(M) = 0 for some target space M , then maps from the torus
T 2 →M are contractible to maps from the sphere S2 →M . Intuitively this is because
the images of the noncontractible circles of the torus, which make it different from
the sphere, can be contracted on M . By this logic, the two-band nondegenerate band
structure in two dimensions is characterized by a single integer, which can be viewed
as the Chern number of the occupied band.

What is the Chern number, intuitively? For simplicity let’s consider maps from S2

to the non-degenerate two-band Hamiltonians described above. One picture is in terms
of π2(S2). An alternate picture is that a nonzero Chern number is an “obstruction”
to globally defining wavefunctions, in the following sense. F , the first Chern form, is
a two-form. Let’s consider a constant nonzero F , which for the case S2 → S2 can be
viewed as the field of a monopole located at the center of the target sphere. Locally,
it is possible to find wavefunctions giving a vector potential A with F = dA, but not
globally. (There has to be a “Dirac string” passing through the surface of the sphere
somewhere.) In other words, states with nonzero Chern number have Chern forms that
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are nontrivial elements of the second cohomology class: they are closed two-forms that
are not globally exact.

The one subtle thing about this two-band model is that there is a nontrivial in-
variant in three spatial dimensions, since π3(S2) = Z (the “Hopf invariant”). In other
words, even if the Chern numbers for the three two-dimensional planes in this three-
dimensional structure are zero, there still can be an integer-valued invariant 2. This
map is familiar to physicists from the fact that the Pauli matrices can be used to map
a normalized complex two-component spinor, i.e., an element of S3, to a real unit
vector, i.e., an element of S2: ni = z†σiz. This “Hopf map” is an example of a map
that cannot be deformed to the trivial (constant) map. The Hopf invariant does not
generalize naturally to more than two bands, but the Chern number does, as we now
see.

Now we consider the case of a nondegenerate two-dimensional band structure with
multiple bands, which we study using a method of Avron, Seiler, and Simon [3]. By
the same argument as in the two-band case, we would like to understand π1 and π2

of the target space Hn×n, nondegenerate n×n Hermitian matrices. As before, we will
find that π1 is zero so that maps from T 2 are equivalent to maps from S2, but the
latter will be quite nontrivial. We first diagonalize H at each point in k-space:

H(k) = U(k)D(k)U−1(k). (2.25)

Here U(k) is unitary and D(k) is real diagonal and nondegenerate. We can smoothly
distort D everywhere in the Brillouin zone to a reference matrix with eigenvalues
1, 2, . . . because of the nondegeneracy: if we plot the jth eigenvalue of D as a function
of kx and ky, then this distortion corresponds to smoothing out ripples in this plot to
obtain a constant plane.

The nontrivial topology is contained in U(k). The key is to note that U(k) in the
above is ambiguous: right multiplication by any diagonal unitary matrix, an element
of DU(N), will give the same H(k). So we need to understand the topology of M =
U(N)/DU(N) = SU(N)/SDU(N), where SDU(N) means diagonal unitary matrices
with determinant 1. We can compute π2 of this quotient by using the exact sequence
of a fibration and the following facts: π2(SU(N)) = π1(SU(N)) = 0 for N ≥ 2. These
imply that π2(M) ∼= π1(SDU(N)) = Zn−1, i.e., n − 1 copies of the integers. This
follows from viewing SDU(N) as N circles connected only by the requirement that
the determinant be 1. Similarly we obtain π1(M) = 0. We interpret these n−1 integers
that arise in homotopy theory as just the Chern numbers of the bands, together with
a constraint that the Chern numbers sum to zero.

2.0.5 Time-reversal invariance in Fermi systems

Now we jump to 2004-2005, when it was noted that imposing time-reversal symmetry
in 2D electronic systems leads to new topological invariants. While nonzero Chern
numbers cannot be realized with time-reversal invariance, the zero-Chern-number class
gets subdivided into two pieces: “ordinary” insulators that do not in general have an

2The nature of this fourth invariant changes when the Chern numbers are nonzero, as shown by
Pontryagin in 1941: it becomes an element of a finite group rather than of the integers.
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edge state, and a “quantum spin Hall effect” or “topological insulator” where a bulk
topological invariant forces an edge state. The topological invariant is not an integer
here but rather a two-valued or Z2 invariant.

The idea that triggered this development started from considering two copies of the
quantum Hall effect, one for spin-up electrons and one for spin-down, with opposite
effective magnetic fields for the two spins. This combination, studied early on by
Murakami, Nagaosa, Zhang [20], for example, is time-reversal invariant because acting
with the time-reversal operator T changes both the magnetic field direction and the
spin. Note that in a model such as this, Sz is a conserved quantum number even
though SU(2) (spin-rotation invariance) is clearly broken, as up and down spins behave
differently. Heuristically, think of the spin-orbit coupling as arising from intra-atomic
terms like L · S, and consider specifically LzSz. For an electron of fixed spin, this
coupling to the orbital motion described by Lz is just like the coupling in a constant
magnetic field, since the orbital motion Lz generates a magnetic dipole moment. In
the simplest case of a Chern number +1 state of up electrons and a Chern number −1
state of down electrons, the edge will have counterpropagating modes: e.g., up-spin
moves clockwise along the edge and down-spin moves counterclockwise. This turns out
not to be a bad caricature of the quantum spin Hall phase in a more realistic system:
one can tell by symmetry arguments that it will have no quantum Hall effect (i.e.,
αc = 0 in Ji = αcεijkEjBk), but it will have a spin Hall effect

J ij = αsεijkEk, (2.26)

where αc and αs are some numerical constants and J ij is a spin current (a current of

angular momentum i in spatial direction j 3 The appearance of the electric field rather
than the magnetic field in the quantum spin Hall equation results from the goal of
having a potentially dissipationless current equation. If dissipation provides no “arrow
of time”, then both sides should transform in the same way under the time-reversal
operation, which fixes the field on the right side to be E rather than B.

As an example of this “two copies of the IQHE” generated by spin-orbit coupling,
consider the model of graphene introduced by Kane and Mele. [13] This is a tight-
binding model for independent electrons on the honeycomb lattice (Fig. 2.1). The spin-
independent part of the Hamiltonian consists of a nearest-neighbor hopping, which
alone would give a semimetallic spectrum with Dirac nodes at certain points in the
2D Brillouin zone, plus a staggered sublattice potential whose effect is to introduce a
gap:

H0 = t
∑
〈ij〉σ

c†iσcjσ + λv
∑
iσ

ξic
†
iσciσ. (2.27)

Here 〈ij〉 denotes nearest-neighbor pairs of sites, σ is a spin index, ξi alternates sign
between sublattices of the honeycomb, and t and λv are parameters.

3There are some challenges that arise in trying to define a spin current in a realistic physical system,
chiefly because spin is not a conserved quantity. Spin currents are certainly real and measurable in
various situations, but the fundamental definition we give of the quantum spin Hall phase will actually
be in terms of charge; “two-dimensional topological insulator” is another term for the same phase.
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The insulator created by increasing λv is an unremarkable band insulator. However,
the symmetries of graphene also permit an “intrinsic” spin-orbit coupling of the form

HSO = iλSO
∑

〈〈ij〉〉σ1σ2

νijc
†
iσ1
szσ1σ2

cjσ2 . (2.28)

Here νij = (2/
√

3)d̂1× d̂2 = ±1, where i and j are next-nearest-neighbors and d̂1 and

d̂2 are unit vectors along the two bonds that connect i to j. Including this type of
spin-orbit coupling alone would not be a realistic model. For example, the Hamiltonian
H0 +HSO conserves sz, the distinguished component of electron spin, and reduces for
fixed spin (up or down) to Haldane’s model. [10] Generic spin-orbit coupling in solids
should not conserve any component of electron spin.

Ly

Lx

d1
d2

ψeiφx

ψeiφx+iφyψeiφy

ψ

Fig. 2.1 The honeycomb lattice on which the tight-binding Hamiltonian resides. For the two

sites depicted, the factor νij of equation (2.28) is νij = −1. The phases φx,y describe twisted

boundary conditions that are used below to give a pumping definition of the Z2 invariant.

This model with Sz conservation is mathematically treatable using the Chern num-
ber above, as it just reduces to two copies of the IQHE. It is therefore not all that
interesting in addition to not being very physical, because of the requirement of Sz
conservation. In particular, the stability of the phase is dependent on a subtle property
of spin-half particles (here we use the terms spin-half and Fermi interchangeably). The
surprise is that the quantum spin Hall phase survives, with interesting modifications,
once we allow more realistic spin-orbit coupling, as long as time-reversal symmetry
remains unbroken.

The time-reversal operator T acts differently in Fermi and Bose systems, or more
precisely in half-integer versus integer spin systems. Kramers showed long ago that
the square of the time-reversal operator is connected to a 2π rotation, which implies
that

T 2 = (−1)2S , (2.29)
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where S is the total spin quantum number of a state: half-integer-spin systems pick
up a minus sign under two time-reversal operations.

An immediate consequence of this is the existence of “Kramers pairs”: every eigen-
state of a time-reversal-invariant spin-half system is at least two-fold degenerate. We
will argue this perturbatively, by showing that a time-reversal invariant perturbation
H ′ cannot mix members of a Kramers pair (a state ψ and its time-reversal conjugate
φ = Tψ). To see this, note that

〈Tψ|H ′|ψ〉 = 〈Tψ|H ′|T 2ψ〉 = −〈Tψ|H ′|ψ〉 = 0, (2.30)

where in the first step we have used the antiunitarity of T and the time-reversal
symmetry of H ′, the second step the fact that T 2 = −1, and the last step is just to
note that if x = −x, then x = 0.

Combining Kramers pairs with what is known about the edge state, we can say a
bit about why a odd-even or Z2 invariant might be physical here. If there is only a
single Kramers pair of edge states and we consider low-energy elastic scattering, then
a right-moving excitation can only backscatter into its time-reversal conjugate, which
is forbidden by the Kramers result above if the perturbation inducing scattering is
time-reversal invariant. However, if we have two Kramers pairs of edge modes, then a
right-mover can back-scatter to the left-mover that is not its time-reversal conjugate.
This process will, in general, eliminate these two Kramers pairs from the low-energy
theory.

Our general belief based on this argument is that a system with an even number
of Kramers pairs will, under time-reversal-invariant backscattering, localize in pairs
down to zero Kramers pairs, while a system with an odd number of Kramers pairs
will wind up with a single stable Kramers pair. Additional support for this odd-even
argument will be provided by our next approach. We would like, rather than just trying
to understand whether the edge is stable, to predict from bulk properties whether the
edge will have an even or odd number of Kramers pairs. Since deriving the bulk-edge
correspondence directly is quite difficult, what we will show is that starting from the
bulk T -invariant system, there are two topological classes. These correspond in the
example above (of separated up- and down-spins) to paired IQHE states with even or
odd Chern number for one spin. Then the known connection between Chern number
and number of edge states is good evidence for the statements above about Kramers
pairs of edge modes.

A direct Abelian Berry-phase approach for the 2D Z2 invariant is provided in the
Appendix, along with an introduction to Wess-Zumino terms in 1+1-dimensional field
theory and a physical interpretation of the invariant in terms of pumping cycles. The
common aspect between these two is that in both cases the “physical” manifold (either
the 2-sphere in the WZ case, or the 2-torus in the QSHE case) is extended in a certain
way, with the proviso that the resulting physics must be independent of the precise
nature of the extension. When we go to 3 dimensions in the following lecture, it turns
out that there is a very nice 3D non-Abelian Berry-phase expression for the 3D Z2

invariant; while in practice it is harder to compute than the original expression based
on applying the 2D invariant, it is much more elegant mathematically so we will focus
in that. Actually, for practical calculations, a very important simplification for the



Topological phases I: Thouless phases arising from Berry phases xxix

case of inversion symmetry (in both d = 2 and d = 3) was made by Fu and Kane [8]:
the topological invariant is determined by the product of eigenvalues of the inversion
operator at the 2d time-reversal symmetric points of the Brillouin zone.

2.0.6 Experimental status of 2D insulating systems

This completes our discussion of one- and two-dimensional insulating systems. The
two-dimensional topological insulator was observed by a transport measurement in
(Hg,Cd)Te quantum wells [15], following theoretical predictions [4]. A simplified de-
scription of this experiment is that it observed, in zero magnetic field, a two-terminal
conductance 2e2/h, consistent with the expected conductance e2/h for each edge if
each edge has a single mode, with no spin degeneracy. More recent work has observed
some of the predicted spin transport signatures as well, although as expected the
amount of spin transported for a given applied voltage is not quantized, unlike the
amount of charge.

In the next section, we start with the three-dimensional topological insulator and its
remarkable surface and magnetoelectric properties. We then turn to metallic systems
in order to understand another consequence of Berry phases of Bloch electrons.

2.0.7 3D band structure invariants and topological insulators

We will give a very quick introduction to the band structure invariants that allowed
generalization of the previous discussion of topological insulators to three dimensions.
However, most of our discussion of the three-dimensional topological insulator will
be in terms of emergent properties that are difficult to perceive directly from the
bulk band structure invariant. We start by asking to what extent the two-dimensional
integer quantum Hall effect can be generalized to three dimensions. A generalization
of the previous homotopy argument [3] can be used to show that there are three Chern
numbers per band in three dimensions, associated with the xy, yz, and xz planes of the
Brillouin zone. A more physical way to view this is that a three-dimensional integer
quantum Hall system consists of a single Chern number and a reciprocal lattice vector
that describes the “stacking” of integer quantum Hall layers. The edge of this three-
dimensional IQHE is quite interesting: it can form a two-dimensional chiral metal, as
the chiral modes from each IQHE combine and point in the same direction.

Consider the Brillouin zone of a three-dimensional time-reversal-invariant material.
Our approach will be to build on our understanding of the two-dimensional case:
concentrating on a single band pair, there is a Z2 topological invariant defined in the
two-dimensional problem with time-reversal invariance. Taking the Brillouin zone to
be a torus, there are two inequivalent xy planes that are distinguished from others by
the way time-reversal acts: the kz = 0 and kz = ±π/a planes are taken to themselves
by time-reversal (note that ±π/a are equivalent because of the periodic boundary
conditions). These special planes are essentially copies of the two-dimensional problem,
and we can label them by Z2 invariants z0 = ±1, z±1 = ±1, where +1 denotes
“even Chern parity” or ordinary 2D insulator and −1 denotes “odd Chern parity” or
topological 2D insulator. Other xy planes are not constrained by time-reversal and
hence do not have to have a Z2 invariant.
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The most interesting 3D topological insulator phase (the “strong topological insu-
lator”) results when the z0 and z±1 planes are in different 2D classes. This can occur
if, moving in the z direction between these two planes, one has a series of 2D problems
that interpolate between ordinary and topological insulators by breaking time-reversal.
We will concentrate on this type of 3D topological insulator here. Another way to make
a 3D topological insulator is to stack 2D topological insulators, but considering the
edge of such a system shows that it will not be very stable: since two “odd” edges
combine to make an “even” edge, which is unstable in the presence of T -invariant
backscattering, we call such a stacked system a “weak topological insulator”.

Above we found two xy planes with two-dimensional Z2 invariants. By the same
logic, we could identify four other such invariants x0, x±1, y0, y±1. However, not all
six of these invariants are independent: some geometry (exercise) shows that there are
two relations, reducing the number of independent invariants to four:

x0x±1 = y0y±1 = z0z±1. (2.31)

(Sketch of geometry: to establish the first equality above, consider evaluating the Fu-
Kane 2D formula on the four EBZs described by the four invariants x0, x+1, y0, y+1.
These define a torus, on whose interior the Chern two-form F is well-defined. Arranging
the four invariants so that all have the same orientation, the A terms drop out, and
the F integral vanishes as the torus can be shrunk to a loop. In other words, for
some gauge choice the difference x0 − x+1 is equal to y0 − y+1.) We can take these
four invariants in three dimensions as (x0, y0, z0, x0x±1), where the first three describe
layered “weak” topological insulators, and the last describes the Alternately, the “axion
electrodynamics” field theory in the next subsection can be viewed as suggesting that
there should be only one genuinely three-dimensional Z2 invariant.

For example, the strong topological insulator cannot be realized in any model with
Sz conservation, while, as explained earlier, a useful example of the 2D topological
insulator (a.k.a. “quantum spin Hall effect”) can be obtained from combining IQHE
phases of up and down electrons. The impossibility of making an STI with Sz conser-
vation follows from noting that all planes normal to z have the same Chern number,
as Chern number is a topological invariant whether or not the plane is preserved by
time-reversal. In particular, the kz = 0 and kz = ±π/a phases have the same Chern
number for up electrons, say, which means that these two planes are either both 2D
ordinary or 2D topological insulators.

While the above argument is valid and useful for connecting the 3D topological
insulators to the 2D case, it doesn’t give much insight into what sort of gapless surface
states we should expect at the surface of a strong topological insulator. The answer
can be obtained by other means (some properties can be found via the field-theory
approach given in the next section): the spin-resolved surface Fermi surface encloses
an odd number of Dirac points. In the simplest case of a single Dirac point, believed to
be realized in Bi2Se3, the surface state can be pictured as “one-quarter of graphene.”
Graphene, a single layer of carbon atoms that form a honeycomb lattice, has two Dirac
points and two spin states at each k; spin-orbit coupling is quite weak since carbon is a
relatively light element. The surface state of a three-dimensional topological insulator
can have a single Dirac point and a single spin state at each k. As in the edge of the
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2D topological insulator, time-reversal invariance implies that the spin state at k must
be the T conjugate of the spin state at −k.

2.0.8 Axion electrodynamics, second Chern number, and
magnetoelectric polarizability

The three-dimensional topological insulator turns out to be connected to a basic elec-
tromagnetic property of solids. We know that in an insulating solid, Maxwell’s equa-
tions can be modified because the dielectric constant ε and magnetic permeability
µ need not take their vacuum values. Another effect is that solids can generate the
electromagnetic term

∆LEM =
θe2

2πh
E ·B =

θe2

16πh
εαβγδFαβFγδ. (2.32)

This term describes a magnetoelectric polarizability: an applied electrical field gen-
erates a magnetic dipole, and vice versa. An essential feature of the above “axion
electrodynamics” theory (cf. Wilczek, 1987 [31]) is that, when the axion field θ(x, t)
is constant, it plays no role in electrodynamics; this follows because θ couples to a
total derivative, εαβγδFαβFγδ = 2εαβγδ∂α(AβFγδ) (here we used that F is closed, i.e.,
dF = 0), and so does not modify the equations of motion. However, the presence of the
axion field can have profound consequences at surfaces and interfaces, where gradients
in θ(x) appear.

A bit of work shows that, at a surface where θ changes, there is a surface quantum
Hall layer of magnitude

σxy =
e2(∆θ)

2πh
. (2.33)

(This can be obtained by moving the derivative from one of the A fields to act on
θ, leading to a Chern-Simons term for the EM field at the surface. The connection
between Chern-Simons terms and the quantum Hall effect will be a major subject of
the last part of this course.) The magnetoelectric polarizability described above can be
obtained from these layers: for example, an applied electric field generates circulating
surface currents, which in turn generate a magnetic dipole moment. In a sense, σxy
is what accumulates at surfaces because of the magnetoelectric polarizability, in the
same way as charge is what accumulates at surfaces because of ordinary polarization.

We are jumping ahead a bit in writing θ as an angle: we will see that, like polar-
ization, θ is only well defined as a bulk property modulo 2π (for an alternate picture
on why θ is periodic that is more appropriate for electroweak symmetry breaking, see
Ref. [31]). The integer multiple of 2π is only specified once we specify a particular way
to make the boundary. How does this connect to the 3D topological insulator? At first
glance, θ = 0 in any time-reversal-invariant system, since θ → −θ under time-reversal.
However, since θ is periodic, θ = π also works, as −θ and θ are equivalent because of
the periodicity, and is inequivalent to θ = 0.

Here we will not give a microscopic derivation of how θ includes, for a band struc-
ture of noninteracting electrons, a part that is an integral of the Chern-Simons form:

θ =
1

2π

∫
BZ

d3k εijk Tr[Ai∂jAk − i
2

3
AiAjAk], (2.34)
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which can be done by imitating our previous derivation of the polarization formula [25,
6]. In general, unlike for the electrical polarization, there are additional non-geometrical
contributions as well [7, 17]. Instead we will focus on understanding the physical
and mathematical meaning of the Chern-Simons form that constitutes the integrand,
chiefly by discussing analogies with our previous treatment of polarization in one di-
mension and the IQHE in two dimensions. These analogies are summarized in Table
I.

Throughout this section,

Fij = ∂iAj − ∂jAi − i[Ai,Aj ] (2.35)

is the (generally non-Abelian) Berry curvature tensor (Aλ = i〈u|∂λ|u〉), and the trace
and commutator refer to band indices. We will understand the Chern-Simons form
K = Tr[Ai∂jAk − i 2

3AiAjAk] above starting from the second Chern form Tr[F ∧ F ];
the relationship between the two is that

dK = Tr[F ∧ F ], (2.36)

just as A is related to the first Chern form: d(TrA) = TrF . These relationships hold
locally (this is known as Poincare’s lemma, that given a closed form, it is locally
an exact form) but not globally, unless the first or second Chern form generates the
trivial cohomology class. For example, we saw that the existence of a nonzero first
Chern number on the sphere prevented us from finding globally defined wavefunctions
that would give an A with dA = F . We are assuming in even writing the Chern-
Simons formula for θ that the ordinary Chern numbers are zero, so that an A can be
defined in the 3D Brillouin zone. We would run into trouble if we assumed that an
A could be defined in the 4D Brillouin zone if the first or second Chern number were
nonzero. Note that the electromagnetic action above is just the second Chern form of
the (Abelian) electromagnetic field.

The second Chern form is closed and hence generates an element of the de Rham
cohomology we studied earlier. There are higher Chern forms as well: the key is that
symmetric polynomials can be used to construct closed forms, by the antisymmetry
properties of the exterior derivative. In physics, we typically keep the manifold fixed (in
our Brillouin zone examples, it is usually a torus Tn), and are interested in classifying
different fiber bundles on the manifold. In mathematical language, we want to use
a properly normalized cohomology form to compute a homotopy invariant (i.e., with
respect to changing the connection, not the manifold). This is exactly what we did with
the Chern number in the IQHE, which was argued to compute certain integer-valued
homotopy π2 invariants of nondegenerate Hermitian matrices.

More precisely, we saw that the U(1) gauge-dependence of polarization was con-
nected to the homotopy group π1(U(1)) = Z, but that this is connected also to the
existence of integer-valued Chern numbers, which we explained in terms of π2. (These
statements are not as inconsistent as they might seem, because our calculation of π2

came down to π1 of the diagonal unitary group.) We can understand the second Chern
and Chern-Simons form similarly, using the homotopy invariants π3 (gauge transfor-
mation in d = 3) and π4 (quantized state in d = 4). The Chern-Simons integral for θ
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Polarization Magnetoelectric
polarizability

dmin 1 3
Observable P = ∂〈H〉/∂E Mij = ∂〈H〉/∂Ei∂Bj

= δijθe
2/(2πh)

Quantum ∆P = eR/Ω ∆M = e2/h
Surface q = (P1 −P2) · n̂ σxy = (M1 −M2)

EM coupling P ·E ME ·B
CS form Ai εijk(AiFjk + iAiAjAk/3)

Chern form εij∂iAj εijklFijFkl
Table 2.1 Comparison of Berry-phase theories of polarization and magnetoelectric polariz-

ability.

given above, in the non-Abelian case, has a 2πn ambiguity under gauge transforma-
tions, and this ambiguity counts the integer-valued homotopy invariant

π3(SU(N)) = Z, N ≥ 2. (2.37)

In other words, there are “large” (non-null-homotopic) gauge transformations. Note
that the Abelian Chern-Simons integral is completely gauge-invariant, consistent with
π3(U(1)) = 0.

The quantized state in d = 4 was originally discussed in the context of time-
reversal-symmetric systems. The set Q has one integer-valued π4 invariant for each
band pair, with a zero sum rule. These invariants survive even once T is broken, but
realizing the nonzero value requires that two bands touch somewhere in the four-
dimensional Brillouin zone. In this sense, the “four-dimensional quantum Hall effect”
is a property of how pairs of bands interact with each other, rather than of individual
bands. Even if this 4D QHE is not directly measurable, it is mathematically connected
to the 3D magnetoelectric polarizability in the same way as 1D polarization and the
2D IQHE are connected.

The above Chern-Simons formula for θ works, in general, only for a noninteracting
electron system. This is not true for the first Chern formula for the IQHE, or the
polarization formula, so what is different here? The key is to remember that the 3D
Chern formula behaves very differently in the Abelian and non-Abelian cases; for
example, in the Abelian case, θ is no longer periodic as the integral is fully gauge-
invariant. Taking the ground state many-body wavefunction and inserting it into the
Chern-Simons formula is not guaranteed to give the same result as using the multiple
one-particle wavefunctions.

However, we can give a many-body understanding of θ that clarifies the geometric
reason for its periodicity even in a many-particle system. Consider evaluating dP/dB
by applying the 3D polarization formula

Pi = e

∫
BZ

d3k

(2π)3
TrAi . (2.38)
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to a rectangular-prism unit cell. The minimum magnetic field normal to one of the
faces that can be applied to the cell without destroying the periodicity is one flux
quantum per unit cell, or a field strength h/(eΩ), where Ω is the area of that face. The
ambiguity of polarization (2.38) in this direction is one charge per transverse unit cell
area, i.e., e/Ω. Then the ambiguity in dP/dB is

∆
Px
Bx

=
e/Ω

h/(eΩ)
=
e2

h
= 2π

e2

2πh
. (2.39)

So the periodicity of 2π in θ is really a consequence of the geometry of polarization,
and is independent of the single-electron assumption that leads to the microscopic
Chern-Simons formula.

2.0.9 Anomalous Hall effect and Karplus-Luttinger anomalous velocity

Our previous examples of Berry phases in solids have concentrated on insulators,
but one of the most direct probes of the Berry phase of Bloch electrons is found
in metals that break time-reversal symmetry. The breaking of T allows a nonzero
transverse conductivity σxy to exist along with the metallic diagonal conductivity σxx.
This “anomalous Hall effect” (AHE) can originate from several different microscopic
processes. The most interesting from a geometric point of view is the intrinsic AHE
that results from Berry phases of a time-reversal-breaking band structure when the
Fermi level is in the middle of a band. We will not attempt to discuss this interesting
physics here but refer the reader to a recent comprehensive review [21] and note that
there are an increasing number of other examples of Berry-phase effects in metals.
There are similar effects related to the orbital moment of Bloch electrons, which is
similar in some ways but not purely geometric as it arises from both the wavefunctions
and the Hamiltonian, unlike the Berry phase which is purely a wavefunction property.
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Introduction to topological order

Now we consider strongly interacting topological phases, defined as those that cannot
be understood in terms of free particles. In contrast, the integer quantum Hall effect
and topological insulators can be understood in terms of free particles, although these
phases are stable in the sense that they survive over a finite region of interaction
strength until a phase transition occurs. Our main tool will be quantum field theory,
which is a powerful language to describe the long-wavelength physics of interacting
systems. After giving some microscopic motivation from the fractional quantum Hall
effect (FQHE), we give a first example of field theory applied to spin chains as an
example of how an analysis of topological terms in a simple field theory led to a clear
experimental prediction (the “Haldane gap”) regarding antiferromagnetic integer-spin
Heisenberg chains.

We then return to the quantum Hall effect and develop Abelian Chern-Simons
theory, an example of a truly topological field theory. Although it is written in terms
of one or more U(1) gauge fields, similar to ordinary electromagnetism, its behavior
is strikingly different than the conventional field theories with which the reader may
already be familiar. In lieu of a microscopic derivation, which has been carried out but
is somewhat tedious, we show that it unifies properties such as ground state degeneracy,
braiding statistics, and edge excitations. We will follow increasingly standard parlance
and use the term “topological order” specifically for phases of matter described by a
non-trivial topological field theory, hence having ground state degeneracy, fractional
statistics, etc. Thus the integer quantum Hall effect, which is certainly a topological
phase of matter and well described by the Abelian Chern-Simons theory given below
with k = 1, does not have topological order in the sense introduced by Wen.

3.1 FQHE background

We give quickly some standard background on the fractional quantum Hall effect
in order to motivate the Chern-Simons field theory introduced below. The goal of
that field theory is to give a compact universal description of the key features of the
topological order in quantum Hall states, similar in spirit to the Ginzburg-Landau
field theory of symmetry-breaking phases. Most of this material is standard and can
be found in quantum Hall edited volumes and textbooks (Prange and Girvin; Das
Sarma and Pinczuk; Jain).

Our discussion centers on the Laughlin wavefunction for two-dimensional electrons
(zj = xj + iyj describes the jth electron, j = 1, . . . , N)
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Ψm =

∏
i<j

(zi − zj)m
 e−

∑
i |zi|

2/4`2 . (3.1)

The magnetic length is ` =
√

~c/eB and the wavefunction is not normalized. This
wavefunction clearly can be expanded over the single-electron lowest Landau level
wavefunctions in the rotational gauge,

ψm = zme−|z|
2/4`2 . (3.2)

where m = 0, 1, . . . labels angular momentum. For m = 1 the Laughlin state is just a
Slater determinant for the filled lowest Landau level, but for higher m it is believed
not to be a sum of any finite number of Slater determinants in the N →∞ limit.

This wavefunction can be justified using the pseudopotential approach introduced
by Haldane: it is the maximum-density zero-energy state of a repulsive interaction
that vanishes for relative angular momentum greater than or equal to m. We checked
that its density is ν = 1/m by looking at the degree of the polynomial factor, which is
directly related to 〈r2〉, and argued that it contains “quasihole” excitations of charge
−q/m, where q is the charge of the electrons. The wavefunction for a quasihole at z0

is

Ψquasihole =

(∏
i

(zi − z0)

)
Ψm. (3.3)

The fractional charge can be understood by noting that m copies of the extra factor
here would lead to the wavefunction with an electron at z0, but without treating z0

as an electron coordinate; in other words, a wavefunction with a “hole” added at z0.
It has edge states that at first glance are loosely similar to those in the filled Landau
level.

3.2 Topological terms in field theories: the Haldane gap and
WZW models

As a warm-up for fully topological field theories, we give an example of how topolog-
ical terms can have profound consequences in “ordinary” field theories (i.e., theories
without gauge fields). By a topological term we mean loosely one whose value in any
specific configuration (a path in the path integral) is a topological invariant, so that
the set of all paths can be divided into topological sectors by the value of the topo-
logical term. A famous example of this phenomenon found by Haldane led to the
first understanding of the gapped spin-one Heisenberg antiferromagnet in one spatial
dimension, which has recently been interpreted as a symmetry-protected topological
phase of interacting particles because it can be smoothly connected to a trivial phase
by breaking spatial symmetries such as inversion. We will focus on topological terms
that appear in nonlinear σ-models, which despite their unwieldy name are a very ba-
sic type of field theory for systems in or near an ordered phase breaking a continuous
symmetry.
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We first present Haldane’s example (following closely the treatment of Auerbach [2]),
and then discuss a different kind of topological term that appears in Wess-Zumino-
Witten models, again in one spatial dimension; details of the latter are provided in
an appendix. The nonlinear σ-model (NLSM) is an example of an effective theory, a
simplified description of the low-energy degrees of freedom of a complicated system.
Ginzburg-Landau theory is another such effective theory, and one use of the NLSM is
as a further simpification of Ginzburg-Landau theory where we have thrown away the
“hard” or “massive” fluctuations of the magnitude of the order parameter, keeping
only the “soft” or “massless” fluctuations within the order parameter manifold.

For definiteness, consider a d-dimensional XY model, which would be described
in Ginzburg-Landau theory by a 2-component real or 1-component complex order
parameter. The mean-field physics in the ordered phase as a function of the order
parameter is as follows: the order parameter manifold of symmetry-related ground
states is a circle, and we can expect that fluctuations along this circle are “soft” in
the sense of requiring little energy (as this is a flat direction of the energy) while
those perpendicular to the circle are more costly. This order parameter manifold is the
same as that considered in the discussion of topological defects in Section 1, where
defects were classified using maps from surfaces enclosing the defect in real space to
the order parameter manifold. At low temperature we might expect that a reasonable
description of the system is therefore obtained just from fluctuations of the order
parameter’s direction, leading to a functional integral for the coarse-grained classical
partition function:

ZNLSM =

∫
Dθ(x)e−βc

∫ (∇θ)2
2 ddx. (3.4)

Here c is a coupling constant with units of energy if d = 2; one could estimate c
simply from the coupling strength in a lattice XY model. The NLSM it is called
nonlinear because the circle is defined by a hard constraint on the n̂ field, which
in more complicated target manifolds such as the sphere leads to interaction (i.e.,
nonlinear) terms in the fields obtained in a perturbative expansion; it is called a sigma
model because of its first appearance in particle physics.

For a quantum-mechanical model at zero temperature, we might expect on general
grounds that imaginary time will become an extra dimension in any Euclidean path-
integral representation of the partition function, in the same way as the Dirac-Feynman
path integral for quantum mechanics involves integration of the Lagrangian over time
(a 0+1-dimensional theory). Now we will obtain a NLSM for a quantum-mechanical
problem in one spatial dimension. Heuristically, we might expect an NLSM to be
a reasonable description for a quantum model that is “close to” having symmetry-
breaking order.

Our approach is to derive a connection between the low-energy, long-wavelength
degrees of freedom of the spin path integral of the Heisenberg antiferromagnet. This
process is known as Haldane’s mapping in the context of spin systems: we will use
it to show that there is a topological term present for half-integer spin but not for
integer spin, which is believed to explain the different behavior seen numerically and
experimentally in these two cases.
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First we look for a more general way of writing the Berry phase term for a spin
that results from setting up a coherent-state path integral for spin. In order to make
a path integral, we should set up an integral over “classical” trajectories; what is the
classical trajectory of a spin? One answer is to use the overcomplete basis of coherent
states for the spin-S Hilbert space (see Auerbach [2]), which are labeled by a unit
vector Ω̂. As S increases, the spin wavefunction becomes more and more concentrated
around Ω̂.

ω[Ω̂] = −
∫ β

0

dτφ̇ cos θ. (3.5)

For a closed path on the sphere, we showed in Chapter II that this corresponds to the
signed spherical area enclosed by the path. An overall ambiguity of ±4π in this area
does not affect the physics, since the area ω appears in the path integral action with
a coefficient −iS. For a many-spin system, the full action was

S[Ω̂] = −iS
∑
i

ω[Ω̂i] +

∫ β

0

dτ
S2J

2

∑
ij

Ω̂i · Ω̂j . (3.6)

For now we return to a single spin to set up an improved way of writing the Berry
phase term.

Let the vector potential A(Ω̂) be assumed to have the following property: its line
integral over a closed orbit on the sphere should give the area enclosed by the orbit,

ω =

∫ β

0

dτ A(Ω̂)
˙̂
Ω. (3.7)

Then Stokes’s theorem fixes curl A to be the magnetic field of a magnetic monopole
(a vector with uniform outward component):

∇×A · Ω̂ = εαβγ
∂Aβ

∂Ω̂α
Ω̂γ = 1. (3.8)

Two explicit examples to check that this can be done are

Aa = −cos θ

sin θ
φ̂, Ab =

1− cos θ

sin θ
φ̂. (3.9)

Clearly Aa has singularities at the north and south poles, while Ab has a singularity
only at the south pole. (Parenthetical note: actually Ab is a good representation of the
field of a Dirac monopole: a singular flux (“Dirac string”) enters through the south
pole, and then goes out uniformly over the rest of the sphere. A small circle around
the south pole contains flux 4π, which contributes 4πS to the action, but recall that
this winds up giving zero physical contribution to the path integral.)

Now we can use this representation to write concisely the variation of the Berry
phase term under a small variation in the path from imaginary time 0 to imaginary
time t. Suppose that we want to calculate

δω[Ω̂] =

∫ t

0

dt′ δ(A · ˙̂
Ω) =

∫ t

0

dt′ (
∂Aα

∂Ω̂β
δΩ̂β

˙̂
Ω
α

+Aα
d

dt
δΩ̂α) (3.10)
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under a small variation of the path δΩ̂ that is assumed to keep the endpoints fixed.

Now subtract ∂Aα

∂Ω̂β
˙̂
Ω
β

δΩ̂α from the first term and add it to the second, to get

δω[Ω̂] =

∫ t

0

dt′
∂Aα

∂Ω̂β
εαβγ(

˙̂
Ω× δΩ̂)γ +

∫ t

0

dt′ (Aα
d

dt
δΩ̂α +

∂Aα

∂Ω̂β
˙̂
Ω
β

δΩ̂α)

=

∫ t

0

dt′ Ω̂ · ( ˙̂
Ω× δΩ̂) +

∫ t

0

dt′
d

dt′
(A · δΩ̂) =

∫ t

0

dt′ Ω̂ · ( ˙̂
Ω× δΩ̂). (3.11)

Here we used the condition (3.8) and also, in rewriting the first term, the fact that the

quantity in parentheses (
˙̂
Ω× δΩ̂) ‖ Ω̂ because of the constant length of the vector Ω̂.

Now, after this prelude, we are ready to rewrite the full path integral for the many-
spin Heisenberg model. The first step is to write the spin Ω̂i in terms of two continuous
fields of spacetime n̂ and L:

Ω̂i = ηin̂(xi)

√
1−

∣∣∣∣L(xi)

S

∣∣∣∣2 +
L(xi)

S
. (3.12)

Here ηi alternates between sublattices, n̂(x) is a unit vector field, sometimes referred
to as the Néel field, and L is constrained to be perpendicular to n̂. Hence a constant
value of n̂ corresponds to a classical Néel state. It seems like we have greatly increased
the degrees of freedom by this rewriting; what we do now is restrict the allowed Fourier
components of the new fields (i.e., the Brillouin zone) to small momenta in such a way
that the total number of degrees of freedom is unchanged (cf. Auerbach for details).
The spirit of this approximation is that we are interested in long-length-scale physics so
details on the scale of the lattice spacing are unimportant. It turns out that we assume
slow variations in n̂ but only that |L| � S, i.e., that L is small but not necessarily
slowly varying. We now expand the path integral in powers of |L|/S.

A pair of spins gives a contribution

Ω̂i·Ω̂j ≈ ηiηj−
1

2
ηiηj(n̂i−n̂j)

2+
1

S2

[
LiLj −

1

2
ηiηj(L

2
i + L2

j )

]
+

1

S
(ηjLin̂j+ηiLjn̂i)+. . .

(3.13)
Here the neglected terms are of order |L|2(n̂i − n̂j) or smaller. In the first term, use
a Taylor expansion to convert differences of the Néel field into derivatives and keep
only the leading contribution. You can show that the cross terms (those with both L
and n̂) vanish by the symmetry of the Heisenberg Hamiltonian. The term with two L
factors we rewrite below in Fourier space, where it is much simpler and where we will
be able to “integrate it out”.

What we are left with, after going from the lattice to integrals using∑
i

Fi → a−d
∫

ddx
∑
i

δ(x− xi)F (x), (3.14)

is the continuum representation

H = E0 +
1

2

∫
ddx

[
ρs
∑
l

|∂ln̂|2 +

∫
ddx′ (Lxχ

−1
xx′Lx′)

]
. (3.15)
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Here E0 is the classical energy

E0 =
S2

2

∑
ij

Jijηiηj . (3.16)

In the first term, the spin stiffness is

ρs = − S2

2dNad

∑
ij

Jijηiηj |xi − xj |2. (3.17)

The second or “canting” term in Fourier space is simply∫
ddq

(2π)d
LqL−q

J(q)− J(π, π, . . .)
, J(q) =

∑
j

eiq·(xi−xj)Jij . (3.18)

Now we just need to rewrite the geometric phase

−iS
∑
i

ωi = −iS
∫ β

0

dτ
∑
i

A(Ω̂i)
˙̂
Ωi. (3.19)

Assume that the vector potential is chosen so that A(Ω̂) = A(−Ω̂), as works for one
of the examples above. Now expanding in terms of the new fields,

−iS
∑
i

ωi = −iS
∑
i

ηiω[n̂i + ηiLi/S]

= −iS
∑
i

[
ηiω[n̂i +

δω

δn̂i
· (Li/S)

]
= −iΥ− i

∫ β

0

dτ
∑
i

(n̂i × ∂τ n̂i · Li). (3.20)

In the last line we used our earlier formula for the variation of ω, and defined

Υ = S
∑
i

ηiω[n̂(xi)], (3.21)

switching to the spatial continuum limit.
Now our goal is going to be to combine the classical and geometric terms in order

to obtain a simple long-wavelength action. The key step is to note that the second term
in (3.20) couples one power of L to a combination of n fields. So integrating out the
L degrees of freedom (a Gaussian integral) will give rise to the following: considering
only the terms involving L and doing the integral in Fourier space, we get (ignoring
an unimportant overall constant)

ZL ∝
∫
Dn̂ exp

[
−1

2

∫
dτ

ddq

(2π)d
(J(q)− J(~π))(n̂× ∂τ n̂)q · (n̂×∂τ n̂)−q

]
. (3.22)

We can simplify this much further: for long wavelengths we approximate χ(q) ≈ χ(0),
and use
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|(n̂× ∂τ n̂|2 = |∂τ n̂|2 (3.23)

from the constant length of n̂. to get just (the real-space constant χ0 = a−dχ(0) =
a−d(J(~0)− J(~π)))

ZL =

∫
Dn̂ exp

(
−1

2

∫ β

0

dτ

∫
ddxχ0|∂τ n̂|2

)
. (3.24)

So, putting it all together, we have

Z ∝
∫
Dn̂ eiΥ exp

[
−1

2

∫ β

0

dτ

∫
ddx

(
χ0|∂τ n̂|2 + ρs|∂xα n̂|2

)]
. (3.25)

This now looks much more symmetric between space and time; if desired, one can
just rescale time to make the theory look like it lives in an isotropic d+ 1-dimensional
space. This gives

Z ∝
∫
Dn̂ eiΥ exp(−

∫
dd+1xLNLSM ), LNLSM =

d+1∑
α=1

∂xα n̂ · ∂xα n̂

2
. (3.26)

This NLSM is the simplest field theory of maps from the space Rd+1 to the unit
sphere. We still need to say a bit about the topological term Υ (the capital Greek
letter upsilon): in one spatial dimension this term fundamentally modifies the physics,
for reasons we shall see. We expand it for slowly varying n̂(x): recall that Υ is defined
to include factors ηi, so

Υd=1 = −S
∑
i

(ω[n̂(x2i)]− ω[n̂(x2i−1)]) =
S

2

∫
dx

a

δω

δn̂
· ∂xn̂a = 2πSΘ[n̂(x, τ)].

(3.27)
Here Θ comes from using our previous variation form for the variation dω:

Θ =
1

4π

∫
dτ

∫
dx (n̂× ∂τ n̂ · ∂xn̂). (3.28)

This form is known as the Pontryagin index, which is a topological invariant like
a winding number. It is an integer and is constant under smooth deformations of n̂.
Essentially it measures the number of times the map from (−L/2, L/2)×(0, β) “wraps”
the sphere S2. You can easily construct examples with Θ = 0 (the constant map) and
Θ = 1 (spherical projection). If you want a sense for why it is a topological invariant
(which is not that hard to show), imagine that someone gives you a sphere wrapped
with paper. The paper can’t be “contracted to a point” without tearing, unlike a loop
drawn on the sphere. So maps S1 → S2 are all contractible, while maps S2 → S2 are
classified by the Pontryagin index.

The important thing to note is that the coefficient in front of this integer is only
2πS, so that there will be a difference between integer and half-integer spins. For
integer spin the topological term doesn’t do anything, while for half-integer spins,
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there is interference between terms with odd or even values of the Pontryagin index. So
Haldane’s mapping explains (with a few approximations along the way!) the profound
difference between integer and half-integer spins in one dimension, later confirmed
experimentally and numerically. It is actually easier just to solve the spin-half chain
using the Bethe ansatz than to explicitly solve its continuum theory with Berry phases,
although a proof has been given that the latter is indeed gapless. The Lieb-Schultz-
Mattis theorem discussed by Chalker elsewhere in this volume provides a general reason
why the half-integer-spin case is gapless. Experimental results by neutron scattering
confirm the existence of a gap and also the existence of spin-half edge states at the
end of chains, which are discussed elsewhere in this volume by Regnault.

So we have seen how the unusual geometry of spin space, in the path-integral
representation, gives rise to a profound difference between integer-spin and half-integer
spin chains. We can connect the above result to the exact solution by Affleck, Kennedy,
Lieb, and Tasaki (AKLT) of a spin-1 chain with additional biquadratic interactions:

H = J
∑
i

[
Si · Sj + α(Si · Sj)2

]
(3.29)

with J > 0 and α = 1/3. This value of α is special in that the two terms on each
bond act as projectors onto the total spin-0 and spin-1 subspaces of the two spins,
with equal weight. The full phase diagram of the bilinear-biquadratic phase diagram
from numerical density-matrix renormalization group studies has been computed [16].
We note that the Haldane problem of the purely bilinear chain is in the same gapped
phase as the AKLT solution, but that there are other phases as well, and there are also
parameter values for which the system is gapless. As the last part of our discussion
of topological terms for now, we explain the existence of two critical points with
labels SU(3)1 and SU(2)2 in the phase diagram found in Ref. [16], which combine a
Lie group with a subscripted integer known as the level. These points are examples
of field theories with both conformal invariance and Lie group symmetry known as
Wess-Zumino-Witten (WZW) models.

The NLSM for the XY model in equation (3.4) can be written in a different way
if we think about the order parameter manifold (the circle) as the Lie group U(1).
Writing g = eiθ, we note that ∂iθ = g−1∂ig, so

ZNLSM =

∫
Dθ(x)e−βc

∫
d2x

∑
i(g
−1∂ig)

2/2). (3.30)

In taking the trace here, we are looking ahead to a generalization. There is not a Lie
group structure on the sphere, but we might be tempted to generalize to other Lie
groups, for example by taking g ∈ U(N) or SU(N). Then g−1∂ig is an element of
the Lie algebra, which has an inner product known as the Killing form; for SU(N),
K(X,Y ) = 2NTr(XY ). Generalizing the kinetic term that is the only term in the
action above to the Lie algebra is straightforward.

However, it turns out that the low-energy physics of this generalization with just
the resulting term is quite different than the U(1) case. As for the NLSM into the
sphere, the fact that the manifolds of unitary groups are curved once we go beyond
the circle, leading to interactions that result in a mass gap. If we want instead to obtain
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a gapless model with Lie group symmetry, we must add an additional topological term
first written down by Wess and Zumino. This term is quite unusual in that it requires
extending the manifold on which the theory lives into an extra dimension. Assume
N > 1 in what follows, and pick g ∈ SU(N) for definiteness. Let us compactify the
two-dimensional space into S2 as for the Haldane chain above. Given a configuration of
the Lie-group field g on the surface of a sphere, we can always find a way to smoothly
deform that configuration to the constant configuration since π2(SU(N)) is trivial.

We will keep writing the generalized model in Euclidean space although their pri-
mary relevance is to quantum models in one spatial dimension. The action of the
Wess-Zumino-Witten model in the usual notation is then (see Appendix for a physics
motivation)

S = − k

8π

∫
S2

d2xK(g−1∂µg, g−1∂µg)− k

24π

∫
B3

d3y εijkK(g−1∂ig, [g
−1∂jg, g

−1∂kg]).

(3.31)
The meaning of upper and lower indices in the first term is that the metric of spacetime
appears. In the second term, in contrast, the ε term appears instead of the metric, a
sign that the term is topological in the sense of being metric-independent. In the
second term, we have chosen a continuation of the field g into the interior B3 of the
sphere S2. While as mentioned above those continuations certainly exist, we should
check to make sure that the physics is independent of precisely which continuation we
chose.

This independence is related to another topological fact about SU(N). Consider
two different continuations from S2 into B3. Actually, as a simpler example, consider
two different continuations from S1 into B2. We could combine those into a field
configuration on S2, where one continuation gives the northern hemisphere and the
other gives the southern hemisphere. In the same way, combining our two continuations
from S2 to B3 gives a field configuration on S3. Since π3(SU(N)) = Z, there are
integer-valued classes of such configurations, and in fact the Wess-Zumino term is
defined so as to compute this topological invariant Z: more precisely, the difference
of the integral above for two different continuations into the bulk is k times 2πn,
where n ∈ Z measures the topological invariant of the map S3 → S3 resulting from
combining the two continuations as described above.

When we put this action into a quantum path integral, it therefore leads to a
quantization of the level k to integers. SU(2)k with k = 2 can be viewed as a different
representation of the same symmetry as the SU(2)1 realized in the spin-half Heisenberg
chain, in the same way as the spins on one site are in different representations of
ordinary SU(2). The full demonstration that the model is gapless is beyond our present
scope, but at least we have a topological understanding of why the Wess-Zumino term
is a natural quantity to consider. One way to tell apart the gapless points associated
with different levels or Lie groups is by computing the central charge c, a measure of
how many degrees of freedom are gapless at the critical point, in units where one free
boson gives c = 1. The WZW model for Lie group g at level k has central charge

c =
k dimSU(N)

k + n
(3.32)
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where dimSU(N) = N(N − 1). Hence SU(3)1 has central charge 2, SU(2)2 has c =
3/2, and SU(2)1 has c = 1, consistent with its bosonized representation as a single
boson.

3.3 Topologically ordered phases: the fractional quantum Hall
effect

3.3.1 Chern-Simons theory I: flux attachment and statistics change

We will now start the process of developing a more abstract description of the frac-
tional quantum Hall effect that will help us understand what type of order it has.
For example, this will define precisely what it means to say that the physical state is
adiabatically connected to the Laughlin wavefunction. Our main tool will be Chern-
Simons theory; we briefly encounted the Chern-Simons term of the electromagnetic
gauge potential when we discussed quantum Hall layers at the surface of the strong
topological insulator, and we will come to that in a moment. However, a more funda-
mental use of the Chern-Simons theory is to describe the internal degrees of freedom
of the quantum Hall liquid. In other words, we will have both an “internal” Chern-
Simons theory describing the quantum Hall liquid and a Chern-Simons term induced
in the electromagnetic action.

Since that sounds complicated, let’s start by understanding why a Chern-Simons
theory might be useful. To begin, we come up with a picture for the Laughlin state
by noting that, since the filled lowest Landau level has one magnetic flux quantum
per electron, the Laughlin state at m = 3 (i.e., ν = 1/3) has three flux quanta per
electron. To get a picture for how the Laughlin state is connected to the ν = 1 state, we
imagine attaching two of these flux quanta to each electron. The resulting “composite
fermion” still has fermionic statistics, by the following counting. Interchanging two
electrons gives a −1 factor. The Aharonov-Bohm factor from moving an electron all
the way around a flux quantum is +1, but in this exchange process, each electron
moves only half-way around the flux quanta attached to the other electron. So when
one of these objects is exchanged with another, the wavefunction picks up three factors
of −1 and the statistics is still fermionic.

These composite fermions now can form the integer quantum Hall state in the
remaining field of one flux quantum per composite fermion, leading to a ν = 1/3
incompressible state in terms of the original electrons. More generally, the phase picked
up by a particle of charge q moving completely around a flux Φ is

eiθ = eiqΦ/(~c). (3.33)

We will now see how the Chern-Simons term lets us carry out a “flux attachment”
related to the above composite fermion idea: in fact, by attaching three flux quanta
rather than two to each electron, we would obtain bosons moving in zero applied
field, and the Laughlin state can be viewed as a Bose-Einstein condensate of these
“composite bosons” [33,27]. 1

1One feature of the composite fermion picture that is preferable to the composite boson picture is
that the former is naturally described as “topological order”, while the latter would lead to a picture
of the phase in terms of the symmetry-breaking order of a BEC.
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The Abelian Chern-Simons theory we will study is described by the Lagrangian
density in 2+1 dimensional Minkowski spacetime

L = 2γεµνλaµ∂νaλ + aµj
µ (3.34)

where γ is a numerical constant that we will interpret later, a is the Chern-Simons
gauge field, and j is a conserved current describing the particles of the theory. Under a
gauge transformation aµ → aµ+∂µχ, the Chern-Simons term (the first one) transforms
as

εµνλaµ∂νaλ → εµνλaµ∂νaλ + εµνλ∂µχ∂νaλ, (3.35)

where the term with two derivatives of χ drops out by antisymmetry. The new term
can be written as

δS = 2γ

∫
d2xdtεµνλ∂µ(χ∂νaλ), (3.36)

where again the term with two derivatives acting on a gives zero by antisymmetry. So,
if we can neglect the boundary, the Abelian Chern-Simons term is gauge-invariant.
(As we discussed previously in the discussion of magnetoelectric polarizability, the
non-Abelian Chern-Simons term is not gauge-invariant, because “large” (non-null-
homotopic) gauge transformations change the integral; this is related to the third ho-
motopy group of SU(N).) Later on we will actually consider a system with a boundary
and see how the boundary term leads to physically important effects.

Consider the equation of motion from varying this action. We get

4γεµνλ∂nuaλ = −jµ. (3.37)

where the 4 rather than 2 appears because the Chern-Simons term has nonzero deriva-
tive with respect to both a and ∂a. For a particle sitting at rest, the spatial components
of the current vanish, but there must be a flux: writing in components,∫

d2x(∂1a2 − ∂2a1) = − 1

4γ

∫
d2x j0. (3.38)

Hence a charged particle in the theory gains a flux of the a field (since the left term is
just the integral of a magnetic field). If the charge is localized, then the flux is localized
as well.

What good is this? Well, we know that when one charged particle with respect to
the a field moves around another, it will now pick up an Aharonov-Bohm phase from
the attached flux in addition to any statistics factor. The additional statistics factor
is

θ =
1

8γ
, (3.39)

where the 1/2 here results because the particles only move halfway around each other
in an exchange. In other words, if we started with θ = 0 bosonic particles but added
a γ = 1

8π Chern-Simons term, we would obtain fermions, and vice versa. But so far
nothing constrains γ, suggesting that in two dimensions, “braiding” statistics is not
constrained to be bosonic or fermionic. Particles in two dimensions that are neither
bosonic nor fermionic are known as “anyons”.
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Why is two spatial dimensions so special? It turns out that an argument about
why generalized statistics are possible for point particles in two spatial dimensions but
not higher dimensions was given long ago by Leinaas and Myrheim (1976). The key
observation is that an exchange path that takes one particle around another and back
to its original location is not smoothly contractible in 2D without having the particles
pass through each other, while in higher dimensions, such a path is contractible. The
consequence of this is that in two dimensions, phase factors are not just defined for
permutations of the particles but rather for any “braiding”. 2

3.3.2 Chern-Simons theory II: integrating out gauge fields and coupling
to electromagnetism

Aside from the composite fermion/composite boson pictures, why might the Chern-
Simons theory with Lagrangian density given by (3.34) describe quantum Hall states?
Without working through a detailed derivation starting from nonrelativistic quantum
mechanics of many interacting electrons in a magnetic field (which is still not all
that rigorous; for a discussion, see lecture notes of A. Zee in Field Theory, Topology,
and Condensed Matter Physics, Springer), we can note the following. A conserved
electromagnetic current in 2+1D can always be written as the curl of a gauge field:

Jµ =
1

2π
εµνλ∂νaλ. (3.40)

(Note that this electromagnetic current might in general be distinct from the particle
current above.) Here a is automatically a gauge field since the U(1) gauge transfor-
mation does not modify the current. Gauge invariance forbids the mass term aµaµ,
so the lowest-dimension possible term is the Chern-Simons term, which we write for
future use with a different normalization than above:

LCS =
k

4π
εµνλaµ∂νaλ. (3.41)

The point of the new normalization k = 8πγ compared to (3.34) is that the boson-
fermion statistics transformation above now corresponds just to k = 1. We will argue
later that k should be an integer for the electron to appear somewhere in the spectrum
of excitations of the theory.

Does this term need to appear? No, for example, in a system that has P or T sym-
metry, it cannot appear. However, if it does appear, then since there is only one spatial
derivative, it dominates the Maxwell term at large distances. Effectively we define the
quantum Hall phase as one in which LCS appears in the low-energy Lagrangian; for
example, this is true in both the Laughlin state and the physical state with Coulomb
interactions, even though the overlap between those two ground-state wavefunctions
is presumably zero in the thermodynamic limit.

What if we added the aµJ
µ coupling and integrated out the gauge field? Well, the

main reason not to do that is that we obtain a nonlocal current-current coupling. Since

2Even non-Abelian statistics are possible if there are multiple ground states: the phase factor
associated with a particular braid is then a matrix acting on the set of ground states, and two such
matrices need not commute.
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the original action is quadratic in the fields, this integration is not too difficult, but
an alternate, equivalent way to do it is to solve for a in terms of J . Given a general
Lagrangian

L = φQφ+ φJ, (3.42)

where Q denotes some operator, we have the formal equation of motion from varying
φ

2Qφ = −J (3.43)

which is solved by

φ =
−1

2Q
J. (3.44)

Then substituting this into the Lagrangian (and ignoring some subtleties about order-
ing of operators), we obtain

L =
1

4
J

1

Q
J − J 1

2Q
J = −J 1

4Q
J. (3.45)

So for the Chern-Simons term we need to define the inverse of the operator εµνλ∂ν
that appears between the a fields. This is a bit subtle because there is a zero mode of the
original operator, related to gauge-invariance: for any smooth function g, εµνλ∂ν(∂λg) =
0. To define the inverse, we fix the Lorentz gauge ∂µaµ = 0. In this gauge, we look for
an inverse using

(εµνλ∂ν)(ελαβ∂αaβ) = εµνλελαβ(∂ν∂αaβ). (3.46)

We can combine the ε tensors by noting that εµνλ = ελµν , so there are two types of
nonzero terms in the above: either µ = α and ν = β or vice versa, with a minus sign
in the second case. From the first type of term, we obtain ∂α(∂βaβ) which is zero by
our gauge choice. From the second type, we obtain

−∂2
νaµ. (3.47)

So the inverse of the operator appearing in the Chern-Simons term in this gauge is
−εµνλ∂ν/∂2, and the Lagrangian (3.34) with the gauge field integrated out is just

L =
1

8γ
jµ

(
εµνλ∂ν
∂2

)
jλ. (3.48)

Aside from showing another interesting difference between the Chern-Simons term
and the Maxwell term, we can use this inverse to couple the Chern-Simons theory
to an external electromagnetic gauge potential Aµ. We will set e = ~ = 1 except as
noted. We do not include the Maxwell term to give this field dynamics, but rather view
it as an imposed field beyond the magnetic field producing the phase. For example,
we could use this additional field to add an electrical field, and we should find a Hall
response. Let’s try this:

L =
k

4π
εµνλaµ∂νaλ −

1

2π
εµνλAµ∂νaλ =

k

4π
εµνλaµ∂νaλ −

1

2π
εµνλaµ∂νAλ, (3.49)

where in the second step we have dropped a boundary term and used the antisymmetry
property of the ε tensor. Note that to obtain the second term we have just rewritten
AµJ

µ using (3.40.
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Now we can integrate out aµ using equation (3.48) above, recalling γ = k/(8π),
and obtain

Leff =
π

k
Jµε

µνλ∂ν
1

∂2
Jλ =

1

4πk
εµαβ∂αAβε

µνλ∂ν
1

∂2
ελγδ∂γAδ. (3.50)

where in the second step we have used the rewritten Lagrangian in (3.49) to identify
Jµ = 1

2π ε
µνλ∂νAλ. As above, the nonzero possibilities are α = ν and β = λ (+1) or

vice versa (-1), and also γ = µ and δ = ν (+1) or vice versa (-1). Working through
these, one is left with the γ = ν and δ = µ terms,

Leff =
1

4πk
εµνλAµ∂νAλ. (3.51)

This is the electromagnetic Chern-Simons term. The electromagnetic current is ob-
tained by varying A:

Jµ = −δLeff

δAµ
=

1

2πk
εµνλ∂νAλ. (3.52)

where the factor of 2 is obtained because the variation can act on either A.
We can see immediately that this predicts a Hall effect: in response to an electrical

field along x, we obtain a current along y. What about the factor 1/(2π)? That is here
just so that the response, once we restore factors of e and ~, is

σxy =
e2

(2π)k~
=

1

k

e2

h
. (3.53)

Here we get a clue about the physical significance of k. Another clue is to consider
the electromagnetic charge J0 induced by a change in the magnetic field δB (i.e., an
additional field beyond the one producing the FQHE):

J0 = δn =
1

2πk
δB. (3.54)

where we have written J0 = δn to indicate that this electromagnetic density describes
the change in electron density from the ground state without the additional field. For
the IQHE, a change of one flux quantum corresponds to one additional electron, while
we can see that the k = 3 Chern-Simons theory predicts a change in density e/3,
consistent with the quasihole and quasiparticle excitations.

To summarize what we have learned so far, we now see that Chern-Simons theory
predicts a connection between the Hall quantum, the statistics of quasiparticles in
the theory (from the previous section), and the effective density induced by a local
change in the magnetic field. Here “quasiparticles”, which we will discuss later, means
whatever particle couples to the Chern-Simons theory as in the preceding section,
which need not be an electron.

3.3.3 Chern-Simons theory III: topological aspects and gapless edge
excitations

One obvious respect in which the Chern-Simons theory is topological is that, because
ε rather than the metric tensor g was used to raise the indices, there is no dependence
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on the metric. In Zee’s language, it describes a world without rulers or clocks. Since the
stress-energy tensor in a relativistic theory is determined by varying the Lagrangian
with respect to the metric, the stress-energy tensor is identically zero.

How can a theory be interesting if all its states have zero energy, as in the pure
Chern-Simons theory? Well, one interesting fact is that the number of zero-energy
states is dependent on the manifold where the theory is defined. We will not try to
compute this in general but will solve the theory for the case of the torus. It is quite
surprising that we can solve this 2+1-dimensional field theory exactly; the key will be
that there are very few physical degrees of freedom once the U(1) gauge invariance is
taken into account.

We wish to solve the pure Chern-Simons theory with action

LCS =
k

4π
εµνλaµ∂νaλ (3.55)

on the manifold R(time)× T 2(space). The gauge invariance is under aµ → aµ + ∂µχ,
χ an arbitrary scalar function. Given an arbitrary configuration of the gauge field aµ,
we first fix a0 = 0 by the gauge transformation aµ → aµ + ∂µχ with χ = −

∫
a0 dt.

The Lagrangian is then

L = − k

4π
εijaiȧj , (3.56)

where i, j = 1, 2. The equation of motion from varying the original Lagrangian with
respect to a0 now gives a constraint

εij∂iaj = 0. (3.57)

There is still some gauge invariance remaining in a1, a2: we can add a purely spatially
dependent χ, so that a0 remains 0, to make ∂iai = 0 (exercise). Then (ai(t), aj(t)) have
zero spatial derivatives and hence are purely functions of time. The Lagrangian (3.56)
is now just the minimal coupling of a particle moving in a position-dependent vector
potential; thinking of (a1, a2) as the coordinates of a particle moving in the plane,
and noting that a constant magnetic field can be described by the vector potential
(By/2,−Bx/2) = (Ba2/2,−Ba1/2), we see that this is the interaction term of a
particle in a constant magnetic field.

So far, using gauge invariance we can reduce the degrees of freedom from a 2+1-
dimensional field theory to the path integral for the quantum mechanics of a particle
moving in two dimensions. There is one last bit of gauge invariance we need to use.
This will reduce the space on which our particle moves, which so far is R2 because
the gauge fields are noncompact, to the torus T 2 on which the theory is defined. We
consider a gauge transformation of the form aj → aj − iu−1∂ju, where u is purely a
function of space. Note that if we can write u = exp(iθ), this becomes a conventional
gauge transformation aj → aj + ∂jθ. This gauge transformation will not break the
previous two gauge constraints if ∇2θ = 0.

However, the periodicity of the torus means that we might not be able to define
θ periodically, even if u is defined globally and the gauge transformation is indeed
periodic. Taking the torus to be L1×L2, the following θ has zero Laplacian everywhere
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and gives rise to a periodic u and hence a periodic gauge transformation, even if θ is
not itself periodic:

θ =
2πn1x

L1
+

2πn2y

L2
. (3.58)

The effect of this gauge transformation is that we can shift the particle’s trajectory by
an arbitrary constant integer multiple of L1 in the x direction and L2 in the y direction.
To make the torus equivalent to the unit torus, we can rescale ai(t) = (2π/Li)qi(t).
So finally we have shown

S =

∫
d2x dt

k

4π
εµνλaµ∂νaλ = −kL1L2

4π

∫
dt

(2π)2

L1L2
εijqiq̇j . (3.59)

Here one L1L2 factor is from the spatial integrals and one is from the change of
variable from ai to qi. We still haven’t done anything quantum-mechanical to solve
the path integral. However, we can temporarily add a term mq̇2

i /2 to the Lagrangian
and recognize it as the path integral for a particle moving on the torus in a constant
magnetic field. The gauge potential is Ai = kπεijqj , which corresponds to a magnetic
field B = 2πk (this factor of 2 always appears in the rotational gauge). This is in
our theorist’s units with ~ = e = 1; it means that there are a total of k flux quanta
through the torus.

The limit we care about for pure CS theory is m→ 0, which takes all states not in
the lowest Landau level to infinite energy. This makes sense because in a topological
theory there can be no energy scale; the states either have some constant energy (the
lowest Landau level here), which can be taken to zero, or infinite energy (the other
Landau levels here). A quick calculation shows that there are exactly k states in the
lowest Landau level on the torus pierced by k flux quanta; note that the “shift” of
1 extra level on the sphere is absent. For example, the lowest Landau level with one
flux quantum through the sphere corresponds to the coherent-state path integral for
a s = 1/2 particle (see problem sets), with 2 degenerate states.

The conclusion is that the parameter k also controls the ground-state degeneracy
on the torus. An argument (X.G. Wen and Q. Niu, Phys. Rev. B41, 9377 (1990))
(regrettably direct calculation seems to be more difficult) shows that the general de-
generacy of the pure Abelian CS theory on a 2-manifold of genus g is kg. So for a
topological theory, the physical content of the model is determined not just by ex-
plicit parameters in the action, such as k, but also by the topology of the manifold
where the theory is defined. In this sense topological theories are sensitive to global
or “long-ranged” properties, even though the theory is massive/gapped. (Of course, in
the pure CS theory there is no notion of length so the distinction between local and
global doesn’t mean much, but adding a Maxwell term or something like that would
not modify the long-distance properties; it would just mean that the other Landau
levels are no longer at infinite energy.)

3.3.4 Bulk-edge correspondence

We noted above that the Chern-Simons term has different gauge-invariance properties
from the Maxwell term: in particular, in a system with a boundary, it is not gauge-
invariant by itself because the boundary term we found above need not vanish. Our
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last goal in this section is to see that this gauge invariance leads to the free massless
chiral boson theory at the edge,

Sedge =
k

4π

∫
dt dx (∂t + v∂x)φ∂xφ. (3.60)

Here k is exactly the same integer coefficient as in the bulk CS theory, while v is a
nonuniversal velocity that depends on the confining potential and other details. Note
that the kinetic term here is “topological” in the sense that it does not contribute to
the Hamiltonian, because it is first-order in time. The second term is not topological
and hence shouldn’t be directly obtainable from the bulk theory.

The theory of the bulk and boundary is certainly invariant under “restricted”
gauge transformations that vanish at the boundary: aµ → aµ + ∂µχ with χ = 0
on the boundary. From (3.36) above, the boundary term vanishes if χ = 0 there.
This constraint means that degrees of freedom that were previously gauge degrees of
freedom now become dynamical degrees of freedom. We will revisit this idea later.

To start, choose the gauge condition a0 = 0 as in the previous section and again
use the equation of motion for a0 as a constraint. 3 Then εijaj = 0 and we can write
ai = ∂iφ. Substituting this into the bulk Chern-Simons Lagrangian

S = − k

4π

∫
εijai∂0aj d

2x dt = − k

4π

∫
(∂xφ∂0∂yφ− ∂yφ∂0∂xφ) d2x dt

= − k

4π

∫
(∂x(φ∂0∂yφ)− ∂y(φ∂0∂xφ)) d2x dt

= − k

4π

∫
(∇× v)z d

2x dt = − k

4π

∫
v · dl dt, (3.61)

where v is the vector field
v = (φ∂0∂xφ, φ∂0∂yφ). (3.62)

(You might wonder why this doesn’t let us transform the action simply to zero in the
case of the torus studied in the previous section. The reason is that using Stokes’s
theorem in the second line, we have assumed the disk topology–since the torus has
nontrivial topology, we are not allowed to use Stokes’s theorem to obtain zero, cf.
“Preliminaries” lecture notes.) So at the boundary, which we will assume to run along
x for compactness, the resulting action is, after an integration by parts,

Sedge =
k

4π

∫
∂tφ∂xφdx dt. (3.63)

We’re almost done–this predicts a “topological” edge theory determined by the
bulk physics; this edge theory is topological in that the Hamiltonian is zero. However,
in order to obtain an accurate physical description we need to include non-universal,
non-topological physics arising from the details of how the Hall droplet is confined.

3Here and before we are assuming that the Jacobians from our gauge-fixings and changes of
variables are trivial. That this is the case is argued in S. Elitzur et al., Nuclear Physics B 326,
108 (1989). Another nice discussion in this paper is how, for the non-Abelian case, the bulk can be
understood as providing the Wess-Zumino term that keeps the edge theory gapless.
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One approach to this is to start from a hydrodynamical theory of the edge and then
recognize one term in that theory as Sedge above. The other term in that theory is a
nonuniversal velocity term, and the combined action is

Sedge =
k

4π

∫
(∂tφ− v∂xφ) ∂xφdx dt. (3.64)

Here the nonuniversal parameter v clearly has units of a velocity, and in the correlation
functions of the theory discussed below indeed appears as a velocity. The Hamiltonian
density is

H =
kv

4π
(∂xφ)2 (3.65)

Note that for the Hamiltonian to be positive definite, the product kv needs to be
positive: in other words, the sign of the velocity is determined by the bulk parameter
k even thought the magnitude is not, and the edge is indeed chiral. (The density at
the edge is found from the hydrodynamical argument to be proportional to ∂xφ/(2π),
so the above interaction term corresponds to a short-ranged density-density interac-
tion; as usual, we will neglect the differences that arise if the long-ranged Coulomb
interaction is retained instead.)

3.3.5 Chern-Simons theory IV: connecting edge theory to observables

We give a quick overview of how the above theory leads to detailed predictions of
several edge properties. The general approach to treating one-dimensional electronic
systems via free boson theories is known as “bosonization”, and is the subject of
several books. 4. While we will not calculate the main results in detail, it turns out
that there is a close similarity between the 1-dimensional free (chiral or nonchiral)
boson Lagrangian and the theory of the algebraic phase of the XY model studied
previously.

The reason such a connection exists is simple: the Euclidean version of the nonchi-
ral version of the above free boson theory is just the 2D Gaussian theory. However, we
know from the study of the XY model that subtleties such as the Berezinskii-Kosterlitz-
Thouless transition arise when the variable appearing in the Gaussian theory is taken
to be periodic, as when it describes an angular variable in that model. One of the
surprising results we found was a power-law phase with continuously variable expo-
nents: the correlations of spin operators Sx + iSy = exp(iθ) go as a power-law with
the coefficient depending on the prefactor of the Gaussian.

The connection between the edge theory above and physical quantities is that the
electron correlation function is represented in the bosonized theory as eikφ: effectively
φ describes a single quasiparticle and k quasiparticles make up the electron. The
electron propagator in momentum space is likewise here found to have an exponent
that depends on k: there is a factor of k2 from the k’s in the electron operator, and a
factor of k−1 from the quasiparticle propagator since k appears as a coefficient in the
Lagrangian. The result is

G(q, ω) ∝ (vq + ω)k−1

vq − ω
. (3.66)

4For example, M. Stone, Bosonization, World Scientific
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This describes an electron density of states N(ω) ∝ |ω|k−1, and this exponent can be
measured in tunneling exponents: dI/dV ∝ V k−1. As a sanity check, the k = 1 case
describes a constant density of states and the predicted conduction is Ohmic: I ∝ V .

Experimental agreement is reasonable but hardly perfect; at ν = 1/3 the observed
tunneling exponent I ∝ V α observes α ≈ 2.7, which is far from the Ohmic value
(α = 1) but reasonably close to the predicted value α = 3. The tunneling exponent also
does not appear to be perfectly constant when one is on a Hall plateau, as the theory
would predict. Other measurements include “noise” measurements that attempt to
see the quasiparticle charge directly, and in recent years interferometry measurements
that try to check more subtle aspects of the theory.

In closing we comment briefly on the generalization of the above Chern-Simons
and edge theories to more complicated (but still Abelian) quantum Hall states. These
states, as suggested by the hierarchy picture, have multiple types of “particles”, and
two particles can have nontrivial statistics whether or not they belong to the same
species. These statistics are defined by a universal integer “K matrix” that can be
taken as a fundamental aspect of the topological order in the state. (Information must
also be provided about the allowed quasiparticle types.) The resulting CS theory is

L =
1

4π
KIJaIµ∂νa

J
λ (3.67)

This effective theory works for all but a few of the many quantum Hall states observed
in experiment. Prof. Stern will probably discuss the exceptions, which are believed to
be exotic “non-Abelian” quantum Hall states, elsewhere in this volume. It is hoped
that these lectures have clarified how a few geometrical structures (the Berry phase,
Chern and Chern-Simons forms, etc.) underlie a remarkable diversity of physics.

3.4 Appendix: Topological invariants in 2D with time-reversal
invariance

The point of this Appendix is to provide additional details on the topological invariants
in the two-dimensional case, which are more difficult to write down explicitly in terms
of the Berry phase than the 3D case. One way of doing it is educational as it builds
on the classic work of Wess and Zumino that was alluded to above in the discussion
of spin chains.

3.4.1 An interlude: Wess-Zumino terms in one-dimensional nonlinear
σ-models

A mathematical strategy similar to what we will need for the QSHE was developed
by Wess and Zumino in the context of 1+1-dimensional field theory. The free boson is
described by the action

S0 = −K
2

∫
R2

(∇φ)2, (3.68)

which for a compact boson field φ is the nonlinear sigma model into the circle S1,
which is the manifold of the Lie group U(1). The direct generalization of this to a
more complicated Lie group such as SU(N) is written as
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S0 = − k

8π

∫
S2

K(g−1∂µg, g−1∂µg), (3.69)

where we have compactified the plane to the sphere, changed the prefactor, and written
the interaction in terms of the “Killing form” K on the Lie algebra associated with g.
(This Killing form is a symmetric bilinear form that, in the U(1) case above, is just
the identity matrix.) Unfortunately this action behaves quite differently from the U(1)
case: it does not describe a critical theory (in particle physics language, it develops a
mass).

To fix this problem, Wess and Zumino wrote a term

SWZ = − 2πk

48π2

∫
B3

εµνλK
(
g−1∂µg,

[
g−1∂νg, g

−1∂λg
])

(3.70)

that is quite remarkable: even writing this term depends on being able to take an
original configuration of g on the sphere S2 and extend it in to the sphere’s interior
B3. (We will not show here that this term accomplishes the desired purpose, just that
it is topologically well-defined.) At least one contraction into the ball exists because
π2(G) = 0. Different contractions exist because π3(G) = Z, and the coefficient of the
second term is chosen so that, if k (the “level” of the resulting Wess-Zumino-Witten
theory) is an integer, the different topological classes differ by a multiple of 2πi in the
action, so that the path integral is independent of what contraction is chosen. The
reason that π3(G) is relevant here is that two different contractions into the interior
B3 can be joined together at their common boundary to form a 3-sphere, in the same
way as two disks with the same boundary can be joined together to form the top and
bottom hemispheres of a 2-sphere.

3.4.2 Topological invariants in time-reversal-invariant Fermi systems

The main subtlety in finding a topological invariant for time-reversal-invariant band
structures will be in keeping track of the time-reversal requirements. We introduce
Q as the space of time-reversal-invariant Bloch Hamiltonians. This is a subset of the
space of Bloch Hamiltonians with at most pairwise degeneracies (the generalization
of the nondegenerate case we described above; we need to allow pairwise degeneracies
because bands come in Kramers-degenerate pairs). In general, a T -invariant system
need not have Bloch Hamiltonians in Q except at the four special points where k = −k.
The homotopy groups of Q follow from similar methods to those used above: π1 =
π2 = π3 = 0, π4 = Z. T -invariance requires an even number of bands 2n, so Q consists
of 2n × 2n Hermitian matrices for which H commutes with Θ, the representation of
T in the Bloch Hilbert space:

ΘH(k)Θ−1 = H(−k). (3.71)

Our goal in this section is to give a geometric derivation of a formula, first obtained
by Fu and Kane via a different approach, for the Z2 topological invariant in terms of
the Berry phase of Bloch functions:

D =
1

2π

[∮
∂(EBZ)

dk ·A−
∫
EBZ

d2kF

]
mod 2. (3.72)
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The notation EBZ stands for Effective Brillouin Zone, [19] which describes one half of
the Brillouin zone together with appropriate boundary conditions. Since the BZ is a
torus, the EBZ can be viewed as a cylinder, and its boundary ∂(EBZ) as two circles,
as in Fig. 3.1(b). While F is gauge-invariant, A is not, and different (time-reversal-
invariant) gauges, in a sense made precise below, can change the boundary integral by
an even amount. The formula (3.72) was not the first definition of the two-dimensional
Z2 invariant, as the original Kane-Mele paper [14] gave a definition based on counting
of zeros of the “Pfaffian bundle” of wavefunctions. However, (3.72) is both easier to
connect to the IQHE and easier to implement numerically.

The way to understand this integral is as follows. Since the EBZ has boundaries,
unlike the torus, there is no obvious way to define Chern integers for it; put another
way, the F integral above is not guaranteed to be an integer. However, given a map
from the EBZ to Bloch Hamiltonians, we can imitate the Wess-Zumino approach above
and consider “contracting” or “extending” the map to be one defined on the sphere
(Fig. 3.2), by finding a smooth way to take all elements on the boundary to some
constant element Q0 ∈ Q. The geometric interpretation of the line integrals of A in
(3.72) is that these are the integrals of F over the boundaries, and the requirement
on the gauge used to define the two A integrals is that each extends smoothly in the
associated cap. The condition on the cap is that each vertical slice satisfy the same
time-reversal invariance condition as an EBZ boundary; this means that a cap can
alternately be viewed as a way to smoothly deform the boundary to a constant, while
maintaining the time-reversal condition at each step.

The two mathematical steps, as in the Wess-Zumino term, are showing that such
contractions always exist and that the invariant D in (3.72) is invariant of which
contraction we choose. The first is rather straightforward and follows from π1(H) =
π1(Q) = 0. The second step is more subtle and gives an understanding of why only a
Z2 invariant or “Chern parity” survives, rather than an integer-valued invariant as the
IQHE. We can combine two different contractions of the same boundary into a sphere,
and the Chern number of each band pair on this sphere gives the difference between
the Chern numbers of the band pair obtained using the two contractions (Fig. 3.2).

The next step is to show that the Chern number of any band pair on the sphere
is even. To accomplish this, we note that Chern number is a homotopy invariant and
that it is possible to deform the Bloch Hamiltonians on the sphere so that the equator
is the constant element Q0 (here the equator came from the time-reversal-invariant
elements at the top and bottom of each allowed boundary circle.) The possibility of
deforming the equator follows from π1(Q) = 0, and the equivalence of different ways
of deforming the equator follows from π2(Q) = 0. Then the sphere can be separated
into two spheres, related by time-reversal, and the Chern numbers of the two spheres
are equal so that the total Chern number is zero.

The above argument establishes that the two values of the Z2 invariant are related
to even or odd Chern number of a band pair on half the Brillouin zone. Note that
the lack of an integer-valued invariant means, for example, that we can smoothly go
from an Sz-conserved model with ν = 1 for spin ↑, ν = −1 for spin ↓ to a model with
ν = ±3 by breaking Sz conservation in between. This can be viewed as justification
for the physical argument given above in terms of edge states annihilating in pairs,
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that overall every band pair’s Chern number must be even.

once we define the Z2 invariant for disordered systems in the following section.

3.4.3 Pumping interpretation of Z2 invariant

We expect that, as for the IQHE, it should be possible to reinterpret the Z2 invariant
as an invariant that describes the response of a finite toroidal system to some per-
turbation. In the IQHE, the response is the amount of charge that is pumped around
one circle of the torus as a 2π flux (i.e., a flux hc/e) is pumped adiabatically through
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the other circle. 5 Here, the response will again be a pumped charge, but the cyclic
process that pumps the chage is more subtle.

Instead of inserting a 2π flux through a circle of the toroidal system, we insert a
π flux, adiabatically; this is consistent with the part of D in (3.72) that is obtained
by integration over half the Brillouin zone. However, while a π flux is compatible with
T -invariance, it is physically distinct from zero flux, and hence this process is not a
closed cycle. We need to find some way to return the system to its initial conditions.
We allow this return process to be anything that does not close the gap, but require
that the Hamiltonians in the return process not break time-reversal. Since the forward
process, insertion of a π flux, definitely breaks time-reversal, this means that the whole
closed cycle is a nontrivial loop in Hamiltonian space. The Z2 invariant then describes
whether the charge pumped by this closed cycle through the other circle of the torus
is an odd or even multiple of the electron charge; while the precise charge pumped
depends on how the cycle is closed, the parity of the pumped charge (i.e., whether it
is odd or even) does not.

This time-reversal-invariant closure is one way to understand the physical origin of
the A integrals in (3.72), although here, by requiring a closed cycle, we have effectively
closed the EBZ to a torus rather than a sphere. One weakness of the above pumping
definition, compared to the IQHE, is that obtaining the Z2 invariant depends on
Fermi statistics, so that the above pumping definition cannot be directly applied to
the many-body wavefunction as in the IQHE case. We will solve this problem later for
the three-dimensional topological insulator by giving a pumping-like definition that
can be applied to the many-particle wavefunction.

5A previous pumping definition that involves a π-flux but considers pumping of “Z2” from one
boundary to another of a large cylinder was given by Fu and Kane.
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