
Physics 216: Topics in many-body theory, Spring 2016

Problem set 4: assigned 3/31/16, due 4/14/16 (either in class or by 5 pm to 523 Birge)

1. Read Auerbach appendix B or another text on response functions and prove what is some-
times called the “fluctuation-dissipation theorem” relating the response function R(q, ω) (also
known as the retarded correlation function) to the spin structure factor S(q, ω):

S(q, ω) = − 2

1− e−ω/kT
ImR(q, ω). (1)

Recall the definitions of these two quantities: S is the correlation function 〈s(x1, t1)s(x2, t2)〉, while
R is defined in class as the response of an observable to a small perturbation in the Hamiltonian.
Note that the sign convention used in Auerbach differs by a − from what you may find elsewhere.

2. Disorder: I said in class that the model in 1D with random nearest-neighbor hopping and
no onsite potentials is a little special: unlike the model that Anderson studied with random on-site
potentials, the purely hopping model

H =
N∑
i=1

ti(c
†
ici+1 + h.c.) (2)

has a delocalized critical state at E = 0. Work with closed boundary conditions for simplicity and
N even so that the chain is bipartite.

(a) Show that this model has an exact “particle-hole” symmetry: if there is an eigenstate with
energy E, then there is also an eigenstate with energy −E.

(b) Write the Hamiltonian matrix for the case N = 4 and show that its determinant is a perfect
square. It is generally nonzero, but it turns out that there is a singular peak in the density of states
of a large system near E = 0, and we can try to understand this as follows:

(c) Taking the continuum limit of this problem at low energy (see Balents and Fisher, Physical
Review B 56, 12970 (1997), if you wish to know the details) leads to a 1D Dirac-like equation with
random mass:

Hc =

∫
dxψ†h(x)ψ (3)

with
h = −iσz∂x +m(x)σy. (4)

Find a two-component wavefunction that is a zero-energy eigenstate of this Hamiltonian. Hint: the
one-component (i.e., scalar wavefunction)

φ(x) = e
∫ x

dxm(x) (5)

has the nice property
∂xφ(x) = m(x)φ(x), (6)

so use this and some appropriate sign changes to make a two-component wavefunction. The inter-
esting case is when the random mass has mean zero. Argue that in this case your wavefunction is
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not exponentially localized but power-law, at least for a well-behaved distribution. (Don’t worry
about normalizing your wavefunction.)

3. This should not need long calculations, just some thinking. For a classical 2D electron
moving in a magnetic field, find the “guiding-center coordinates” (the x and y coordinates of the
center of a cyclotron operator, which are constants of the motion). As quantum operators, do
these commute with the Hamiltonian (choose rotational gauge for the magnetic field)? Do they
commute with each other? What happens in Landau gauge, where the vector potential is of the
form (0, Bx, 0)?

4. In class/recitation I said that “spin is not conserved in solids”. We would like to make a
very rough estimate, assuming that total angular momentum is conserved, of how long it takes spin
and orbital angular momenta to interchange. Use quantum mechanics to estimate the magnitude
of the L · S term for 2p electrons in an atom of atomic number Z (you can ignore other spin-orbit
terms). Then assume that at t = 0 an orbital “pump” of angular momentum prepares an electron
in the maximum Lz state within the 2p multiplet and with spin state 1√

2
(|↑〉+ |↓〉). Note that this

state is not an energy eigenstate. Project this state onto spin-orbit eigenstates. What is the period
of the resulting oscillations in Lz driven by spin-orbit coupling?
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